
Abstract. The method of moments of coupled-cluster
equations (MMCC), which provides a systematic way of
improving the results of the standard coupled-cluster
(CC) and equation-of-motion CC (EOMCC) calcula-
tions for the ground- and excited-state energies of
atomic and molecular systems, is described. The MMCC
theory and its generalized MMCC (GMMCC) extension
that enables one to use the cluster operators resulting
from the standard as well as nonstandard CC calcula-
tions, including those obtained with the extended CC
(ECC) approaches, are based on rigorous mathematical
relationships that define the many-body structure of the
differences between the full configuration interaction
(CI) and CC or EOMCC energies. These relationships
can be used to design the noniterative corrections to the
CC/EOMCC energies that work for chemical bond
breaking and potential energy surfaces of excited elec-
tronic states, including excited states dominated by
double excitations, where the standard single-reference
CC/EOMCC methods fail. Several MMCC and
GMMCC approximations are discussed, including the
renormalized and completely renormalized CC/EOMCC
methods for closed- and open-shell states, the quadratic
MMCC approaches, the CI-corrected MMCC methods,
and the GMMCC approaches for multiple bond
breaking based on the ECC cluster amplitudes.

Keywords: Coupled-cluster theory – Method of
moments of coupled-cluster equations – Renormalized
coupled-cluster methods – Extended coupled-cluster
theory – Potential energy surfaces

1 Introduction

The single-reference coupled-cluster (CC) theory [1, 2, 3,
4, 5] has become the de facto standard for high-accuracy
calculations for atomic and molecular systems (see Refs.
[6, 7, 8, 9, 10, 11, 12] and references therein). The basic
single-reference CC methods, such as the CC approach
with singles and doubles (CCSD) [13] and the noniter-
ative CCSDþ T(CCSDÞ ¼ CCSD[T� [14] and CCSD(T)
[15] approaches that account for the effect of triexcited
clusters using arguments based on the many-body
perturbation theory (MBPT), in either the spin-orbital
[13, 14, 15] and spin-free [16, 17, 18] or the orthogonally
spin-adapted [19, 20, 21] forms, are particularly attrac-
tive, since they offer an excellent compromise between
the high accuracy in describing the many-electron
correlation effects and the relatively low computer cost,
as has been demonstrated in numerous molecular
applications [7, 8, 9, 10, 11, 12]. Similar remarks apply
to the response CC methods [22, 23, 24, 25, 26, 27] and
the closely related equation-of-motion CC (EOMCC)
approaches [28, 29, 30, 31] and their symmetry-adapted
cluster configuration interaction (CI) analog [32, 33, 34,
35, 36], which provide excellent results for excited
electronic states dominated by one-electron transitions
at the basic singles and doubles level with the ease of the
single-reference calculation [12, 28, 29, 30, 37, 38, 39, 40,
41, 42, 43].

Several problems arise when the standard single-
reference CC methods are applied to potential energy
surfaces (PESs) involving bond breaking and, in the case
of the EOMCC or response CC methods, to excited
states dominated by two-electron and other many-elec-
tron transitions. The ground-state CCSD method fails to
describe bond breaking, since it neglects the important
triply and quadruply excited clusters, T3 and T4,
respectively. The noniterative triples or triples and
quadruples corrections of the CCSD[T], CCSD(T), and
CCSDðTQfÞ [44] approaches fail too, since the standard
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MBPT arguments, on which these approximations are
based no longer apply owing to the divergent behavior
of the MBPT series at larger internuclear separations.
The iterative [20, 45, 46, 47, 48] and higher-order non-
iterative [44, 49] analogs of the CCSD[T], CCSD(T), and
CCSDðTQfÞ approximations, in which arguments orig-
inating from MBPT are used to select the dominant
contributions due to T3 and T4 clusters, work somewhat
better, but the overall performance of all of the previ-
ously mentioned CC approximations in the bond
breaking region is poor. As a result, the ground-state
PESs obtained with the CCSD(T), CCSDðTQfÞ, and
similar noniterative or iterative approximations are
inaccurate and display unphysical features at larger in-
ternuclear distances, particularly when the spin-adapted
restricted Hartree–Fock (RHF) configuration is used as
a reference (Refs. [9, 12, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66] and references therein).
Similar remarks apply to PESs of excited states. The
standard response CC and EOMCC approximations,
including EOMCCSD [28, 29, 30], and their iterative [37,
38, 40, 41, 42, 43] and noniterative [37, 38, 42, 43]
extensions, in which the effects of triply excited config-
urations are estimated using the arguments originating
from MBPT, fail to describe excited states having large
contributions due to doubly excited configurations and
excited-state PESs along bond breaking coordinates [12,
30, 37, 38, 39, 40, 41, 42, 43, 61, 67, 68, 69, 70, 71, 72, 73,
74, 75].

The most natural solution to all of these problems is
obtained by abandoning the single-reference description
and by switching to the multireference CC (MRCC)
formalisms, which introduce concepts of a multi-
dimensional reference or model space and active orbitals
and which are specifically designed to handle general
open-shell and quasidegenerate electronic states,
including, at least in principle, various cases of bond
breaking and all kinds of excited states (see Refs. [9, 76]
for recent reviews and developments). However, it is
much easier to apply the standard single-reference CC
methods of the CCSD or CCSD(T) type, which do not
require defining active orbitals and which do not suffer
from intruder states and multiple, singular, or unphysi-
cal solutions that plague the genuine MRCC theories
[77, 78, 79, 80, 81, 82, 83, 84]. The recently developed
state-specific MRCC approaches [85, 86, 87, 88, 89, 90,
91, 92, 93, 94], the active-space CC or state-selective
MRCC methods combining the idea of using active
orbitals with the single-reference CC theory [51, 53, 54,
58, 69, 70, 71, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107], the reduced multi-reference CCSD ap-
proach [9, 108, 109, 110, 111, 112, 113], and the MRCC
method combining the genuine multi-reference MBPT
and MRCC concepts [76, 114] may change this situation,
but none of the existing MRCC methods are simple or
general enough to be as widely applicable as the stan-
dard CCSD/EOMCCSD or CCSD(T) approaches.

The failures of the standard single-reference CC and
response CC/EOMCC approximations in the bond
breaking region and for excited states dominated by
two- and other many-electron transitions can also be
remedied by using the high-end single-reference CC

approximations, such as full CC singles, doubles, and
triples (CCSDT) [115, 116], full CC singles, doubles,
triples, and quadruples (CCSDTQ) [99, 117, 118, 119],
and full CC singles, doubles, triples, quadruples, and
pentuples (CCSDTQP) [120], and their excited-state or
response extensions, such as the recently implemented
full EOMCCSDT approach [70, 71, 121]. In these
methods, the T3, T4, and other higher-order clusters and
the corresponding higher–than–two-body components
of the EOMCC excitation operator are determined in an
iterative fashion without making additional approxi-
mations employing MBPT. Unfortunately, the prohibi-
tive costs of the CCSDT/EOMCCSDT, CCSDTQ, and
other such methods limit their applicability to very small
systems, consisting of at most a few light atoms de-
scribed by relatively small basis sets. For example, the
full CCSDTQ method requires iterative steps that scale
as n4on6

u [no (nu) is the number of occupied (unoccupied)
orbitals in the molecular orbital basis]. This N10 scaling
with the system size N should be contrasted with the
iterative n2

on4u (or N6) and noniterative n3on4
u (or N7)

steps of the CCSD and CCSD(T) methods, which can
nowadays be routinely applied to systems containing 10–
20 light atoms and a few heavy atoms (approximately
100 light atoms, hundreds of correlated electrons, and
more than 1000 basis functions when the local correla-
tion formalism of Pulay and Saebø [122, 123, 124] is
employed [125, 126, 127]) without a significant loss of
accuracy when compared, for example, with the full
CCSDT method. The CCSDðTQfÞ method [44], with its
relatively inexpensive n2on5

u (N
7) steps in the noniterative

part related to the calculation of the connected qua-
druples (Qf) correction, should become increasingly
more popular in the future, particularly when there is a
need to include the combined effect of T3 and T4 clusters
in the calculations. In analogy to the ground-state
CCSD and CCSD(T) methods, the EOMCCSD ap-
proach and its similarity-transformed EOMCC exten-
sion [128, 129] can be used to calculate the excited states
of systems as big as free-base porphin [128, 129, 130] (the
recently formulated local EOMCCSD approaches [131,
132] will enable calculations for even larger systems). All
of this indicates that in searching for new methods that
would eliminate the failures of the standard CC/EO-
MCC approaches, such as CCSD, CCSD(T), or EO-
MCCSD, in the bond breaking region, one should focus
on improving the results of the low-order CC/EOMCC
calculations, such as CCSD or EOMCCSD, using the
noniterative corrections of the CCSD(T) or CCSDðTQfÞ
type, or the reference configurations of the non-RHF
type. It seems to us that only such methods have a
chance to be applied to a wide range of molecular
problems in the not-too-distant future.

A few new classes of the single-reference CC/EO-
MCC approaches have been proposed in recent years
with the intention of removing the pervasive failing of
the standard RHF-based CC/EOMCC approximations
at larger internuclear separations and for excited states
dominated by two-electron transitions. The most nota-
ble examples include the renormalized (R) and com-
pletely renormalized (CR) CCSD(T) and CCSD(TQ)
methods [12, 55, 56, 57, 58, 59, 60, 61, 63, 64, 74] and
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other noniterative CC approaches [12, 55, 62, 64, 65, 66,
72, 73] based on the general formalism of the method of
moments of CC equations (MMCC) introduced by
Piecuch and Kowalski [55, 56, 57, 72, 73, 133], the
noniterative CC approaches based on the partitioning of
the similarity-transformed Hamiltonian pursued by
Gwaltney, Head-Gordon, and coworkers [134, 135, 136,
137, 138] (see, also, Ref. [139]), the spin-flip CC methods
developed by Krylov and coworkers [140, 141, 142], and
the CCSD-like methods [64, 65, 137, 138, 143, 144] based
on the extended CC (ECC) theories of Arponen, Bishop
and coworkers [145, 146, 147, 148, 149, 150, 151, 152,
153, 154] and Piecuch and Bartlett [31]. The underlying
philosophy of all of these methods is to improve the
performance of the single-reference CC methods in the
bond breaking region, while avoiding the complexity of
the genuine multireference theory and astronomical
costs of the CCSDTQ, CCSDTQP, and similar calcu-
lations, although the applicability of the MMCC for-
malism of Piecuch and Kowalski goes way beyond the
bond breaking problem in chemistry (e.g., the MMCC
theory applies to single-reference as well as multirefer-
ence formalisms [133] and it can deal with the ground as
well as excited electronic [12, 72, 73, 74] and other many-
fermion [155] states). The noniterative CC approaches
developed by Gwaltney, Head-Gordon, and coworkers,
which are based on the partitioning of the similarity-
transformed Hamiltonian [134, 135, 136, 137, 138], the
R-CC, CR-CC, and other MMCC approaches devel-
oped by Piecuch and coworkers [12, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 72, 73, 74], and the ECC singles
and doubles (ECCSD) or ECC doubles (ECCD) theories
tested by Piecuch and coworkers [64, 65] and Head-
Gordon and coworkers [137, 138, 143, 144] provide
substantial improvements in the bond breaking region,
including multiple bond dissociation, in spite of using
the spin-adapted reference configurations of the RHF
type. The spin-flip CC methods of Krylov and coworkers
[140, 141, 142] achieve similar improvements for singly
bonded molecules by using the restricted but ‘‘spin-flip-
ped’’ reference configurations and by generating the
desired diradical ground state as a formal excitation
from the approximate triplet state obtained in the spin-
orbital CCSD calculations with the high-spin, ‘‘spin-
flipped’’, reference. All these methods have their specific
strengths. The major advantages of the CR-CC and
other MMCC approaches developed by Piecuch and
coworkers [12, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 72, 73, 74] are the excellent control of accuracy by
directly addressing the quantity of interest, which is the
difference between the full CI and CC or EOMCC
energies (this is very useful in designing new MMCC
approximations in a systematic manner), the uniform
and approximately variational treatment of ground and
excited states (the CR-CC and MMCC energies are
usually above the corresponding full CI energies, in spite
of the nonvariational collapse of the underlying standard
CC approaches in the bond breaking region), and the
ease with which various higher-order effects, necessary
to describe more complicated types of quasidegenerate
electronic states and multiple bond breaking, can be
incorporated into the formalism at a relatively low cost

(as indicated, for example, by the recent development of
the quasivariational and quadratic MMCC (QMMCC)
approaches [64, 65, 66]).

In this article, we overview the renormalized and
completely renormalized CCSD(T) and CCSD(TQ)
methods and their newest QMMCC and excited-state
extensions [12, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 72, 73, 74]. We also review the underlying MMCC
formalism [55, 56, 57, 72, 73, 133], on which all of these
approaches are based, including its generalization to
nonstandard choices of cluster operators. Finally, we
discuss the recently discovered (P. Piecuch, K. Kowalski,
P.-D. Fan, M. Lodriguito, unpublished results) new
possibilities offered by combining the MMCC and ECC
theories. Formal considerations are accompanied by a
few examples of applications of the R-CC, CR-CC, and
MMCC methods to ground- and excited-state PESs,
including the preliminary results for bond breaking on
nonsinglet PESs (T. Kuś, P. Piecuch, S. A. Kucharski,
M. J. McGuire, K. Kowalski, unpublished results). A list
of the acronyms representing all quantum-chemical
methods discussed or referred to in this article is pro-
vided in the Appendix.

2 The method of moments of coupled-cluster equations:
basic concepts

The main idea of the MMCC formalism of Refs. [55, 56,
57, 72, 73, 133] is that of the state-selective and
noniterative energy corrections

dðAÞK � EK � EðAÞK ; ð1Þ

which, when added to the energies of ground (K ¼ 0)

and excited (K > 0) states, EðAÞK , obtained in the standard
CC/EOMCC calculations, such as CCSD/EOMCCSD
and CCSDT/EOMCCSDT (commonly termed as
method A), recover the corresponding exact, i.e. full
CI, energies EK . The main objective of all approximate
MMCC calculations, including the renormalized and
completely renormalized CCSD(T) and CCSD(TQ)
methods [12, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65] and
their newest QMMCC extensions [12, 64, 65, 66], the CI-
corrected MMCC approaches [12, 55, 62, 72, 73]
(adopted recently by others [156, 157, 158]), and the
excited-state MMCC and renormalized CC methods [12,
72, 73, 74], is to approximate corrections dðAÞK , such that
the resulting MMCC energies, defined as

EðMMCCÞ
K ¼ EðAÞK þ dðAÞK ; ð2Þ

are close to the corresponding exact energies EK . All
MMCC approximations are obtained from the rigorous
formulas for the exact corrections dðAÞK in terms of the
generalized moments of the CC/EOMCC equations,
derived by Piecuch and Kowalski in Refs. [55, 56, 72, 73]
(see, also, Ref. [12]) and discussed later. Similar formulas
for the noniterative corrections dðAÞK to the ground- and
excited-state energies obtained in the genuine MRCC
calculations that are based on the generalized moments
of the MRCC equations and that recover full CI energies
EK (obtained in this case by diagonalizing the effective
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Hamiltonian in the multidimensional reference space)
have been described in Ref. [133]. In this article, we focus
on the MMCC corrections to single-reference CC/
EOMCC energies.

The MMCC formalism and the renormalized and
completely renormalized CC approaches and other
approximations that originate from it preserve the con-
ceptual and computational simplicity of the noniterative
CC methods, such as CCSD(T), which are based on
adding noniterative a posteriori energy corrections due to
higher-order clusters to lower-order CC or EOMCC
(e.g., CCSD/EOMCCSD) results, while offering us a new
way of controlling the quality of CC or EOMCC results
by directly focusing on the quantity of interest, which is
the difference between the full CI and CC or EOMCC
energies. In other words, in MMCC calculations, we are
not just interested in improving the Hartree–Fock or
some other independent-particle-model (IPM) descrip-
tion by adding corrections due to correlation, as we
normally do in standard quantum-chemical approaches,
with the hope that the more high-order terms we add the
better the results (which may not always be the case). We
are rather dealing with the remanent errors that occur in
the standard CC or EOMCC calculations, which we are
trying to estimate by using the explicit relationships be-
tween the CC or EOMCC and full CI energies defining
the MMCC theory. As we will see in a few numerical
examples provided later, this new level of controlling the
accuracy of CC calculations is particularly advantageous
in situations where the conventional arguments origi-
nating from MBPT, which are used to design the
standard CC/EOMCC approximations, fail owing to
divergent behavior of the MBPT series (as is, for exam-
ple, the case in studies of quasidegenerate and excited
states, and bond breaking).

We begin our description of the MMCC methods
with the exact MMCC formalism. The approximate
MMCC methods are discussed in the next section. For a
detailed description of the multireference extension of
the MMCC formalism, which we do not discuss in this
article, we refer the reader to the original work [133].

2.1 The exact ground-state MMCC theory

In the ground-state MMCC theory, we use corrections
dðAÞ0 to improve the results of the standard CC calcula-
tions. By the standard CC calculation, referred here and
elsewhere to as method A, we mean any single-reference
calculation in which the many-body expansion for the
cluster operator T , defining the CC ground-state wave
function

jW0i ¼ eT jUi ; ð3Þ
where jUi is the IPM reference configuration (e.g., the
Hartree–Fock determinant), is truncated at some exci-
tation level mA < N (N is the number of electrons in a
system). An example of the standard CC approximation
is the CCSD method. In this case, mA ¼ 2 and the cluster
operator T is approximated by

T ðCCSDÞ ¼ T1 þ T2 ; ð4Þ

where

T1 ¼
X

i1
a1

ti1
a1E

a1
i1 ð5Þ

and

T2 ¼
X

i1<i2

a1<a2

ti1i2
a1a2E

a1a2
i1i2 ð6Þ

are the singly and doubly excited cluster components
and Ea1

i1 and Ea1a2
i1i2 are the corresponding excitation

operators, generating the singly and doubly excited
configurations, jUa1

i1 i and jUa1a2
i1i2 i, respectively, when

acting on reference jUi. As usual, letters i and a
designate the occupied and unoccupied spin–orbitals,
respectively, and ti1

a1 and ti1i2
a1a2 are the singly and doubly

excited cluster amplitudes. Other examples of the
standard CC approximations are provided by the full
CCSDT, CCSDTQ, and CCSDTQP approaches men-
tioned in the Introduction, in which mA ¼ 3� 5, respec-
tively. The general form of the truncated cluster
operator defining a standard approximation A, charac-
terized by the excitation level mA, is

T ðAÞ ¼
XmA

n¼1
Tn ; ð7Þ

where

Tn ¼
X

i1<���<in

a1<���<an

ti1...in
a1...an

Ea1...an
i1...in

; ð8Þ

n ¼ 1; . . . ;mA, are the many-body components of T ðAÞ

and Ea1...an
i1...in

and ti1...in
a1...an

are the corresponding excitation
operators and cluster amplitudes. The system of
equations for the cluster amplitudes ti1...in

a1...an
defining

the Tn components of T ðAÞ has the following general
form:

hUa1...an
i1...in j �H

ðAÞjUi ¼ 0; i1 < � � �< in; a1 < � � �< an ; ð9Þ
where n ¼ 1; . . . ;mA,

�H ðAÞ ¼ e�T ðAÞHeT ðAÞ ¼ ðHeT ðAÞ ÞC ð10Þ
is the similarity-transformed Hamiltonian of the CC
theory, subscript C designates the connected part of the
corresponding operator expression, and jUa1...an

i1...in i ¼
Ea1...an

i1...in jUi are the n-tuply excited configurations. In
particular, the standard CCSD equations for the singly
and doubly excited cluster amplitudes ti1

a1 and ti1i2
a1a2

defining operators T1 and T2, respectively, are

hUa1
i1 j �H

ðCCSDÞjUi ¼ 0; ð11Þ

hUa1a2
i1i2 j �H

ðCCSDÞjUi ¼ 0; i1 < i2; a1 < a2 ; ð12Þ

where

�H ðCCSDÞ ¼ e�ðT1þT2ÞHeT1þT2 ¼ ðHeT1þT2ÞC ð13Þ
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is the similarity-transformed Hamiltonian of the CCSD
approach. Once the system of equations, Eq. (9), is
solved for T ðAÞ (or Eqs. 11, 12 are solved for T1 and T2),
the CC energy corresponding to the standard method A
is calculated using the equation

EðAÞ0 ¼ hUj �H ðAÞjUi : ð14Þ
For Hamiltonians used in quantum chemistry, which do
not contain higher–than–two-body interactions, EðAÞ0
depends on the T1 and T2 clusters only, independent of
the excitation level mA defining method A (assuming that
mA � 2). We have,

EðAÞ0 ¼ hUjH jUi þ hUj½HNðT1 þ T2 þ
1

2
T 2
1 Þ�CjUi ; ð15Þ

where HN ¼ H � hUjH jUi is the Hamiltonian in the
normal-ordered form.

The MMCC theory is based on the idea of recovering
the exact, full CI, energies from the results of approxi-
mate CC calculations. In order to explain what quanti-
ties provided by the CC theory may be needed to recover
the full CI ground-state energy from the results of
approximate CC calculations, such as CCSD, we should
mention that the single-reference CC equations, Eq. (9),
are formally obtained by inserting the CC wave function
jW0i, Eq. (3), into the electronic Schrödinger equation,

H jW0i ¼ E0jW0i ; ð16Þ
premultiplying both sides of Eq. (16) on the left by e�T

to obtain the connected cluster form of the Schrödinger
equation [3, 4, 6, 9, 55],

�H jUi ¼ E0jUi ; ð17Þ
with

�H ¼ e�T HeT ¼ ðHeT ÞC ; ð18Þ
and projecting Eq. (17), in which T ¼ T ðAÞ, onto the
excited configurations jUa1...an

i1...in i generated by this T ðAÞ.
This general prescription how to derive the equations for
all standard CC methods, which is used until today and
which was introduced by Čı́žek [3, 4], implies that
projections of the connected cluster form of the
Schrödinger equation, Eq. (17), on all excited configu-
rations jUa1...ak

i1...ik
i, i.e.,

Mi1...ik
a1...ak
ðmAÞ ¼ hUa1...ak

i1...ik
j �H ðAÞjUi ; ð19Þ

represent the most fundamental quantities for the CC
theory. These projections define the generalized
moments of CC equations (for a discussion of the
relationship between the method of moments of Krylov
[159], used in various areas of mathematical physics, and
the single-reference CC theory, see Ref. [160]). In the
language of the method of moments of Krylov [159], we
might say that the standard CC equations, Eq. (9), are
obtained by requiring that allMi1...ik

a1...ak
ðmAÞ moments with

k ¼ 1; . . . ;mA vanish. However, the use of the general-
ized moments of CC equations, Eq. (19), does not end
there. Once the cluster operator T ðAÞ, Eq. (7), is deter-
mined by zeroing moments Mi1...ik

a1...ak
ðmAÞ with

k ¼ 1; . . . ;mA, we can calculate the remaining moments

Mi1...ik
a1...ak
ðmAÞ with k > mA. As shown by Piecuch and

Kowalski in Refs. [55, 56] (see, also, Ref. [12]), the
Mi1...ik

a1...ak
ðmAÞ moments with k > mA allow us to determine

the desired noniterative correction dðAÞ0 , Eq. (1), and,
thus, the exact ground-state energy E0. For example, if
we want to recover the full CI energy E0 by adding the
correction dðAÞ0 to the CCSD energy (the mA ¼ 2 case),
we must calculate the generalized moments of the CCSD
equations, i.e., the projections of these equations on
triply, quadruply, pentuply, and hextuply excited con-
figurations or

Mi1...ik
a1...ak
ð2Þ ¼ hUa1...ak

i1...ik j �H
ðCCSDÞjUi; k ¼ 3� 6 : ð20Þ

The projections of the CCSD equations on higher–than–
hextuply excited configurations do not have to be
calculated, since for Hamiltonians containing up to
two-body interactions the generalized moments
Mi1...ik

a1...ak
ð2Þ with k > 6 vanish.

The fundamental formula given by Piecuch and
Kowalski in Refs. [55, 56], which relates the noniterative
correction dðAÞ0 , Eq. (1), with the generalized moments of
the single-reference CC equations and which defines the
ground-state MMCC theory, has the following form:

dðAÞ0 � E0 � EðAÞ0

¼
XN

n¼mAþ1

Xn

k¼mAþ1
hW0jCn�kðmAÞMkðmAÞjUi=

hW0jeT ðAÞ jUi : ð21Þ
Here,

Cn�kðmAÞ ¼ ðeT ðAÞ Þn�k ð22Þ
are the ðn� kÞ-body components of the exponential
wave operator eT ðAÞ , defining the CC method A, jW0i is
the full CI ground state, and

MkðmAÞjUi ¼
X

i1<���<ik

a1<���<ak

Mi1...ik
a1...ak
ðmAÞjUa1...ak

i1...ik i : ð23Þ

Equation (21) states that one has to calculate quantities
Cn�kðmAÞ, Eq. (22), and moments Mi1...ik

a1...ak
ðmAÞ, with

k > mA, to determine the noniterative energy correction
dðAÞ0 . The Cn�kðmAÞ terms are very easy to calculate. The
zero-body term, C0ðmAÞ, equals 1; the one-body term,
C1ðmAÞ, equals T1; the two-body term, C2ðmAÞ, equals
T2 þ 1

2T
2
1 if mA � 2; the three-body term, C3ðmAÞ; equals

T1T2 þ 1
6T

3
1 if mA ¼ 2 and T3 þ T1T2 þ 1

6T
3
1 if mA � 3, etc.

Determination of the generalized moments Mi1...ik
a1...ak
ðmAÞ

is relatively straightforward too, particularly for the
lower-order CC methods, such as CCSD. We can write
the following expressions for the CCSD moments
Mi1...ik

a1...ak
ð2Þ, k ¼ 3� 6, in terms of T1 and T2, assuming

that the Hamiltonian does not contain higher–than–two-
body interactions (cf. Eq. 20):

Mi1i2i3
a1a2a3ð2Þ ¼ hU

a1a2a3
i1i2i3 j½HNðT2 þ T1T2 þ

1

2
T 2
2 þ

1

2
T 2
1 T2

þ 1

2
T1T 2

2 þ
1

6
T 3
1 T2Þ�CjUi ; ð24Þ
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Mi1i2i3i4
a1a2a3a4ð2Þ ¼ hU

a1a2a3a4
i1i2i3i4 j½HNð

1

2
T 2
2 þ

1

2
T1T 2

2 þ
1

6
T 3
2

þ 1

4
T 2
1 T 2

2 Þ�CjUi ; ð25Þ

Mi1i2i3i4i5
a1a2a3a4a5ð2Þ ¼

1

6
hUa1a2a3a4a5

i1i2i3i4i5 j½HNðT 3
2

þ T1T 3
2 Þ�CjUi ; ð26Þ

Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ ¼

1

24
hUa1a2a3a4a5a6

i1i2i3i4i5i6 jðHNT 4
2 ÞCjUi : ð27Þ

Thus, the formula for dðAÞ0 , Eq. (21), is a very good
starting point for developing noniterative CC ap-
proaches, in which ground-state energies are calculated
by adding dðAÞ0 to the CC energy EðAÞ0 . For example, we
can develop a variety of noniterative methods, in which
we correct the results of the CCSD calculations. In this

case, the formula for the correction dðCCSDÞ0 , which must

be added to the CCSD energy EðCCSDÞ0 to recover the
exact energy E0, is

dðCCSDÞ0 � E0 � EðCCSDÞ0

¼
XN

n¼3

Xminðn;6Þ

k¼3
hW0jCn�kð2ÞMkð2ÞjUi=

hW0jeT1þT2 jUi ; ð28Þ
where

Mkð2ÞjUi ¼
X

i1<���<ik

a1<���<ak

Mi1...ik
a1...ak
ð2ÞjUa1...ak

i1...ik i: ð29Þ

Interestingly enough, Eqs. (21) and (28) can be general-
ized to a situation where the truncated cluster operator
T ðAÞ, Eq. (7), is not necessarily determined by solving the
standard CC equations (Eq. 9). In this case, we can no
longer assume that the generalized momentsMi1...ik

a1...ak
ðmAÞ

with k ¼ 1; . . . ;mA vanish. The resulting expression for
the exact energy E0 that uses all generalized moments
Mi1...ik

a1...ak
ðmAÞ, Eq. (19), has the following form [12, 55, 56]:

E0 ¼ M0ðmAÞ þ
XN

n¼1

Xn

k¼1
hW0jCn�kðmAÞMkðmAÞjUi=

hW0jeT ðAÞ jUi; ð30Þ
where we define the zero-body moment M0ðmAÞ in the
same way as we define the CC energy EðAÞ0 , i.e., (cf.
Eq. 14)

M0ðmAÞ ¼ hUj �H ðAÞjUi : ð31Þ
The difference between M0ðmAÞ and EðAÞ0 lies in the fact
that EðAÞ0 is determined using cluster amplitudes origi-
nating from the standard CC equations, Eq. (9), whereas
M0ðmAÞ can be computed with any value of T ðAÞ,
obtained by performing some nonstandard calculations,
such as the ECC calculations mentioned in the Intro-
duction (see the discussion later; see, also, Sect. 3.4). The
Cn�kðmAÞ and MkðmAÞjUi quantities are still defined by

Eqs. (22) and (23), respectively, with an exception that
now we must consider all quantities MkðmAÞjUi with
k ¼ 1; . . . ;N , not just with k > mA. In the case of using
only the T1 and T2 clusters to construct the exact energy
E0 (which are no longer determined by solving the
standard CCSD equations), we can write

E0 ¼ M0ð2Þ þ
XN

n¼1

Xminðn;6Þ

k¼1
hW0jCn�kð2ÞMkð2ÞjUi=

hW0jeT1þT2 jUi ; ð32Þ
where Mkð2ÞjUi is defined by Eq. (29). Again, the only
essential difference between Eqs. (32) and (28) is the
presence of all moments Mi1...ik

a1...ak
ð2Þ in the former

equation. Thus, for Hamiltonians containing up to
two-body interactions, we must consider the singly and
doubly excited moments, Mi1

a1ð2Þ and Mi1i2
a1a2ð2Þ, respec-

tively, which are no longer zeroed, along with moments
Mi1...ik

a1...ak
ð2Þ with k ¼ 3� 6 considered in the standard

CCSD case (cf. Eqs. 24, 25, 26, 27). The formulas for the
Mi1

a1ð2Þ and Mi1i2
a1a2ð2Þ moments in terms of T1 and T2 are

identical to the left-hand sides of the standard CCSD
equations. We obtain (cf. Eqs. 11, 12)

Mi1
a1ð2Þ ¼ hU

a1
i1 j½HNð1þ T1 þ T2 þ

1

2
T 2
1 þ T1T2

þ 1

6
T 3
1 Þ�CjUi ð33Þ

and

Mi1i2
a1a2ð2Þ ¼ hU

a1a2
i1i2 j½HNð1þ T1 þ T2 þ

1

2
T 2
1 þ T1T2

þ 1

6
T 3
1 þ

1

2
T 2
2 þ

1

2
T 2
1 T2 þ

1

24
T 4
1 Þ�CjUi : ð34Þ

Equation (21) or Eq. (28) and Eq. (30) or Eq. (32) define
the ground-state MMCC formalism. Typically, we use
Eq. (21) or Eq. (28). In this case, we solve first the
standard CC equations to determine the truncated
cluster operator T ðAÞ defining the approximate CC
method A. Once the cluster operator T ðAÞ is determined,
we calculate the relevant moments Mi1...ik

a1...ak
ðmAÞ and

calculate the noniterative correction dðAÞ0 , Eq. (21), to

improve the results obtained with method A. All
previously published results of the MMCC calculations
of ground-state PESs involving single and multiple bond
breaking, including the results obtained with the renor-
malized and completely renormalized CCSD(T) and
CCSD(TQ) methods and their QMMCC analogs [12, 55,
56, 57, 58, 59, 60, 61, 63, 64, 65, 66], were obtained with
various approximate variants of the MMCC theory
based on Eqs. (21) and (28). Examples of the applica-
tions of Eq. (28) to molecular PESs are discussed in
Sect. 3. The general MMCC formulas, Eqs. (30) and
(32), can be useful if we want to exploit the nonstandard
values of the Tn cluster components defining T ðAÞ (e.g.,
the nonstandard values of T1 and T2, which are not
obtained with the CCSD method). We may wish to use
the nonstandard Tn components to calculate the energy
according to Eq. (30) or Eq. (32) in exceptionally
difficult cases of multiple bond breaking, where the
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standard CCSD values of the T1 and T2 cluster
components may be too poor to provide the desired
improvements in the description of molecular PESs by
the MMCC theory. A preliminary example of an
application of the general MMCC formula (Eq. 32) to
triple bond breaking in N2, in which the T1 and T2

clusters needed to construct the generalized moments
Mi1...ik

a1...ak
ð2Þ originate from the ECCSD [64, 65] rather

than from the CCSD calculations, is discussed in
Sect. 3.4.

There are two issues that have to be resolved before
using Eqs. (21) and (28) (or their generalizations,
Eqs. (30) and (32)) in practical calculations. First of all,
the exact MMCC corrections dðAÞ0 , Eq. (21), or dðCCSDÞ0 ,
Eq. (28), have the form of the complete many-body
expansions involving all n-tuply excited configurations
with n ¼ mA; . . . ;N , where N is the number of electrons in
a system (see the summations over n in Eqs. (21), (28) or
(30), (32)). Thus, in order to develop the computationally
inexpensive MMCC methods, we must first truncate the
many-body expansions for dðAÞ0 or dðCCSDÞ0 at some, pref-
erably low, excitation level mB. This leads to the
MMCC(mA;mB) schemes [12, 55, 56, 57, 61, 64] (see
Sect. 3). For example, the renormalized and completely
renormalized CCSD(T) and CCSD(TQ) methods dis-
cussed in Sect. 3.1 are the MMCC(mA;mB) schemes with
mA ¼ 2 and mB ¼ 3 [the CCSD(T) case] or mB ¼ 4 [the
CCSD(TQ) case]. Second, the wave function jW0i that
enters the exact Eqs. (21) and (28) (or Eqs. (30), (32)) is
the exact, full CI, ground state. Thus, in order to propose
the computationally tractable approaches based on the
MMCC theory, we must approximate jW0i in some way.
Variousways of approximating jW0i in Eqs. (28) and (32),
leading to the renormalized and completely renormalized
CCSD(T) and CCSD(TQ) methods, the QMMCC meth-
ods, the CI-corrected MMCC approaches (all employing
the CCSD values of T1 and T2 to construct the relevant
energy corrections), and the MMCC methods employing
the ECCSD values of T1 and T2, are discussed in Sect. 3.

2.2 The excited-state MMCC theory

The ground-state MMCC theory, described in Sect. 2.1,
can be extended to excited electronic states [12, 61, 72, 73,
74]. In this case, the noniterative energy corrections dðAÞK ,

Eq. (1), are added to the excitedstate energies, EðAÞK ,

obtained in the EOMCC calculations (another possibility
would be to use the genuine MRCC theory to calculate

the EðAÞK energies and the multi-reference extension of the

MMCC theory to calculate corrections dðAÞK [133]; in this

article we focus on using the EOMCCmethod to calculate

energies EðAÞK ). The MMCC formula for the excited-state

corrections dðAÞK is very similar to the formula for the

ground-state corrections dðAÞ0 , Eq. (21). The only essential
difference between the ground- and excited-state MMCC
energy expressions is the presence of the generalized

moments of the EOMCC equations in the formula for the

excited-state corrections dðAÞK instead of the moments of
the ground-state CC equations entering Eq. (21).

In order to properly define the generalized moments
of the EOMCC equations, we must first describe the
most essential elements of the EOMCC formalism. In
the EOMCC theory, the excited states jWKi of a given
N -electron system are obtained by applying the excita-
tion operator RK to the ground state obtained in the
single-reference CC calculations, i.e.,

jWKi ¼ RK jW0i ; ð35Þ
where jW0i is defined by Eq. (3). In the exact EOMCC
theory, the cluster operator T and the excitation
operators RK are sums of all relevant many-body
components that can be written for a given N -electron
system, including the N -body terms. In the standard
EOMCC approximations, such as EOMCCSD, the
many-body expansions of T and RK are truncated at
some excitation level mA < N (again, A designates the
standard EOMCC approximation). Thus, the cluster
operator T is approximated by T ðAÞ, Eq. (7), whereas for
the excitation operator RK we write

RK ’ RðAÞK ¼ RðAÞK;0 þ RðAÞK;open ; ð36Þ

where the ‘‘open’’ part of RðAÞK is defined as

RðAÞK;open ¼
XmA

n¼1
RK;n ; ð37Þ

with

RK;n ¼
X

i1<���<in

a1<���<an

ri1...in
K;a1...an

Ea1...an
i1...in

ð38Þ

representing the n-body components of RðAÞK . The
standard EOMCCSD method is defined by setting
mA ¼ 2 in Eqs. (7) and (37). In the EOMCCSDT
approach, mA ¼ 3, etc. For the consistency of our
discussion, operator RðAÞK is defined as a unit operator
for K ¼ 0. In the standard EOMCC calculations, the
cluster operator T ðAÞ, Eq. (7), is obtained by solving the
single-reference CC equations, Eq. (9). Once T ðAÞ is
determined, the excitation operators RðAÞK and the
corresponding EOMCC energies EðAÞK are obtained by
diagonalizing the similarity-transformed Hamiltonian
�H ðAÞ, Eq. (10), in a space spanned by the reference
configuration jUi and the excited configurations
jUa1...an

i1...in i, n ¼ 1; . . . ;mA, included in T ðAÞ and RðAÞK (in
practice, it is sufficient to diagonalize �H ðAÞ in a space
spanned by the excited configurations jUa1...an

i1...in i,
n ¼ 1; . . . ;mA, since matrix elements of the
hUa1...an

i1...in j �H
ðAÞjUi type, which form the first column of

the matrix representing �H ðAÞ, vanish for n ¼ 1; . . . ;mA, if

T ðAÞ satifies the single-reference CC equations, Eq. (9);

in this case, instead of energies EðAÞK , we directly obtain

the vertical excitation energies xðAÞK ¼ EðAÞK � EðAÞ0 ).
Kowalski and Piecuch demonstrated that once the

cluster and excitation operators, T ðAÞ and RðAÞK , respec-
tively, and the ground- and excited-state energies EðAÞK
are determined by solving the relevant CC/EOMCC
equations, we can recover the exact, full CI, energies EK
by adding the following corrections dðAÞK to energies EðAÞK
[12, 61, 72, 73, 74]:
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dðAÞK � EK � EðAÞK

¼
XN

n¼mAþ1

Xn

k¼mAþ1
hWK jCn�kðmAÞMK;kðmAÞjUi=

hWK jRðAÞK eT ðAÞ jUi ; ð39Þ
where Cn�kðmAÞ is defined by Eq. (22) and

MK;kðmAÞjUi ¼
X

i1<���<ik

a1<���<ak

Mi1...ik
K;a1...ak

ðmAÞjUa1...ak
i1...ik
i ; ð40Þ

with Mi1...ik
K;a1...ak

ðmAÞ representing the generalized mo-

ments of the EOMCC equations corresponding to the
approximate method A. In analogy to the generalized
moments of the ground-state CC equations, the gener-
alized moments of the EOMCC equations are defined as
projections of the left-hand side of the EOMCC
eigenvalue problem involving �H ðAÞ [the ð �H ðAÞRðAÞK ÞjUi
term] on the excited configurations jUa1...ak

i1...ik i with k > mA,

Mi1...ik
K;a1...ak

ðmAÞ ¼ hUa1...ak
i1...ik jð �H ðAÞRðAÞK ÞjUi : ð41Þ

As shown in Ref. [72], the generalized moments of the
EOMCC equations can be calculated using the following
formula:

Mi1...ik
K;a1...ak

ðmAÞ ¼ hUa1...ak
i1...ik jð �H ðAÞopenRðAÞK;openÞCjUi

þ
Xk�1

p¼mAþ1
hUa1...ak

i1...ik jð �H ðAÞp RðAÞK;k�pÞDCjUi

þ rðAÞK;0M
i1...ik
a1...ak
ðmAÞ ; ð42Þ

where rðAÞK;0 is the coefficient at the reference configuration
jUi in the many-body expansion of RðAÞK jUi, subscripts
open, C, andDC refer to open (i.e., having external lines),
connected, and disconnected parts of a given operator
expression, Oj represents the j-body component of

operator O, andMi1...ik
a1...ak
ðmAÞ are the generalizedmoments

of the single-reference CC equations defined by Eq. (19).
Equation (42) is particularly useful when we want to
implement the excited-state MMCC methods, since it
allowsus to express the relevantmomentsMi1...ik

K;a1...ak
ðmAÞof

the EOMCC equations in terms of the many-body

components RðAÞK;n of the EOMCC excitation operator

RðAÞK , Eq. (36), and matrix elements of the similarity-
transformed Hamiltonian �H ðAÞ. It should be noticed that
Eq. (39) reduces to the ground-state MMCC formula,

Eq. (21), when K ¼ 0. Indeed, when K ¼ 0, RðAÞK becomes

a unit operator, so rðAÞK;0 ¼ 1 and RðAÞK;open ¼ 0 (RðAÞK;n ¼ 0 for

n > 0). According to Eq. (42), we immediately obtain

Mi1...ik
K¼0;a1...ak

ðmAÞ ¼Mi1...ik
a1...ak
ðmAÞ ; ð43Þ

where Mi1...ik
a1...ak
ðmAÞ are the generalized moments of the

ground-state CC equations.
Equation (39) defines the excited-state MMCC for-

malism. This equation allows us to improve the CC/
EOMCC results, in a state-selective manner, by adding
the noniterative corrections dðAÞK , obtained using infor-
mation that can be extracted from the standard

CC/EOMCC calculations (operators T ðAÞ and RðAÞK ,

matrix elements of �H ðAÞ, and generalized moments of the

CC/EOMCC equations), to CC/EOMCC energies EðAÞK .

For example, if we want to recover the full CI energies

EK by adding corrections dðAÞK to the EOMCCSD ener-

gies EðEOMCCSDÞ
K (the mA ¼ 2 case), we must determine

the generalized moments of the EOMCCSD equations,

i.e., the projections of the EOMCCSD equations on
triply excited, quadruply excited, etc., configurations,

Mi1...ik
K;a1...ak

ð2Þ ¼ hUa1...ak
i1...ik jð �H ðCCSDÞRðCCSDÞK ÞjUi ;

k ¼ 3; 4; . . . ; ð44Þ
where �H ðCCSDÞ is the similarity-transformed Hamilto-
nian of the CCSD method, defined by Eq. (13), and

RðCCSDÞK ¼ RK;0 þ RK;1 þ RK;2 ¼ RK;0 þ RðCCSDÞK;open ð45Þ

is the excitation operator of the EOMCCSD approach.
These moments can easily be determined using Eq. (42).
For example, the explicit formula for the leading
moment Mi1i2i3

K;a1a2a3ð2Þ, entering the basic MMCC(2,3)
[72, 73] and CR-EOMCCSD(T) [12, 74] approximations,
in terms of the many-body components of �H ðCCSDÞ and
RðCCSDÞK , is

Mi1i2i3
K;a1a2a3ð2Þ ¼ hU

a1a2a3
i1i2i3 jð �H ðCCSDÞ2 RK;2ÞCjUi

þ hUa1a2a3
i1i2i3 j½ �H

ðCCSDÞ
3 ðRK;1 þ RK;2Þ�CjUi

þ hUa1a2a3
i1i2i3 jð �H ðCCSDÞ4 RK;1ÞCjUi

þ rðCCSDÞK;0 Mi1i2i3
a1a2a3ð2Þ ; ð46Þ

where the ground-state Mi1i2i3
a1a2a3ð2Þ moments are given by

Eq. (24). Similar expressions can be given for the higher-
order EOMCC moments Mi1...ik

K;a1...ak
ð2Þ with k � 4 [73].

The final formula for the corrections dðEOMCCSDÞ
K , which

must be added to the EOMCCSD energies EðEOMCCSDÞ
K

to recover the exact energies EK , is

dðEOMCCSDÞ
K ¼ EK � EðEOMCCSDÞ

K

¼
XN

n¼3

Xn

k¼3
hWK jCn�kð2ÞMK;kð2ÞjUi=

hWK jRðCCSDÞK eT1þT2 jUi ; ð47Þ
where

MK;kð2ÞjUi ¼
X

i1<���<ik

a1<���<ak

Mi1...ik
K;a1...ak

ð2ÞjUa1...ak
i1...ik
i : ð48Þ

As in the ground-stateMMCC theory, two issues must be
resolved before applying Eq. (39) or Eq. (47) in practice.
First, the exact MMCC corrections dðAÞK , Eq. (39), or
dðEOMCCSDÞ

K , Eq. (47), are represented by complete many-
body expansions, including the N -body contributions,
where N is the number of electrons in a system,
corresponding to all many-body components of the wave
functions jWKi that enter Eqs. (39), (47) (see the summa-
tions over n in Eqs. (39), (47)). In order to develop
practical MMCC methods, we must truncate the many-
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body expansions for dðAÞK or dðEOMCCSDÞ
K , given by Eq. (39)

or (47), at some, preferably low, excitation level mB. This
leads to the excited-state MMCC(mA;mB) schemes [12,
72, 73, 74]. Examples of these schemes are the CI-
corrected MMCC(2,3) and MMCC(2,4) methods dis-
cussed in Sect. 4.2 and the CR-EOMCCSD(T) approach
described in Sect. 4.1, in which the suitably designed
corrections dðEOMCCSDÞ

K , based on Eq. (47), are added to
the EOMCCSD energies. More importantly, the wave
functions jWKi that enter the exact Eqs. (39) and (47) are
the full CI states. Thus, we must approximate wave
functions jWKi in some way. A few different methods of
approximating jWKi in Eq. (47), leading to the aforemen-
tioned MMCC(2,3), MMCC(2,4), and CR-EOM-
CCSD(T) schemes, are discussed in Sects. 4.1 and 4.2.

3 Approximate MMCC approaches to ground electronic
states and their performance

Essentially all MMCC approximations proposed to date
are based on an idea of limiting ourselves to the wave
functions jW0i in Eq. (21) or Eq. (28) that do not contain
higher–than–mB-tuply excited components relative to
jUi, where mB > mA is not much higher than the
excitation level mA defining the CC method A, whose
results we are trying to improve [12, 55, 56, 57, 61, 64].
This is, more or less, equivalent to restricting
the summation over n in Eq. (21) to

PmB

n¼mAþ1. In the
resulting MMCC(mA;mB) approaches, we calculate the
energy as follows [12, 55, 56, 57, 61, 64]:

EðMMCCÞ
0 ðmA;mBÞ ¼ EðAÞ0 þ d0ðmA;mBÞ ; ð49Þ

where EðAÞ0 is the energy obtained with the CC method A
and

d0ðmA;mBÞ ¼
XmB

n¼mAþ1

Xn

k¼mAþ1
hW0jCn�kðmAÞ

�MkðmAÞjUi=hW0jeT ðAÞ jUi ð50Þ
is the relevant MMCC correction. We can also contem-
plate the generalized MMCC(mA;mB)
[GMMCC(mA;mB)] approaches, in which we no longer
assume that the truncated cluster operator T ðAÞ, Eq. (7),
is obtained by solving the standard CC equations,
Eq. (9), so we can no longer assume that the generalized
moments Mi1...ik

a1...ak
ðmAÞ with k ¼ 1; . . . ;mA vanish. In this

case, instead of using Eq. (21) and Eqs. (49) and (50)
that result from it, we must use the more general
Eq. (30). By limiting ourselves to the wave functions
jW0i that do not contain higher–than–mB-tuply excited
components relative to jUi and by restricting the
summation over n in Eq. (30) accordingly, we obtain
the following energy expression for the
GMMCC(mA;mB) methods:

EðGMMCCÞ
0 ðmA;mBÞ ¼ M0ðmAÞ þ

XmB

n¼1

Xn

k¼1
hW0jCn�kðmAÞ

�MkðmAÞjUi=hW0jeT ðAÞ jUi ; ð51Þ

where M0ðmAÞ is defined by Eq. (31). Equation (51) is
particularly useful, when the truncated cluster operator
T ðAÞ is obtained in a nonstandard fashion, for example,
by performing the ECC calculations (see Sect. 3.4) that
may provide better cluster amplitudes in severe cases of
bond breaking than the standard CC calculations [64,
65]. The exact MMCC formalism, equivalent to calcu-
lating the full CI energies, is obtained when jW0i in
Eqs. (50) and (51) is the full CI ground-state wave
function and mB ¼ N .

In this article, we focus on the MMCC(mA;mB) and
GMMCC(mA; mB) schemes with mA ¼ 2, which can be
used to correct the results of the CCSD or CCSD-like
(e.g., ECCSD [64, 65]) calculations [for other
MMCC(mA;mB) approximations, including the
MMCC(3, mB) approaches which can be used to improve
the results of the full CCSDT calculations, see Refs. [55,
56, 59, 61]]. The basic MMCC(2;mB) methods are the
MMCC(2,3) and MMCC(2,4) approximations, in which
energies are calculated as follows [12, 55, 56, 57, 61, 64]:

EðMMCCÞ
0 ð2; 3Þ ¼ EðCCSDÞ0 þ hW0jM3ð2ÞjUi=

hW0jeT1þT2 jUi ; ð52Þ

EðMMCCÞ
0 ð2; 4Þ ¼ EðCCSDÞ0 þ hW0jfM3ð2Þ þ ½M4ð2Þ

þ T1M3ð2Þ�gjUi=hW0jeT1þT2 jUi ; ð53Þ
where EðCCSDÞ0 is the CCSD ground-state energy. The
MMCC(2,3) approach requires that we determine
moments Mi1i2i3

a1a2a3ð2Þ, Eq. (24), whereas the MMCC(2,4)

method requires that we determine moments Mi1i2i3
a1a2a3ð2Þ

and Mi1i2i3i4
a1a2a3a4ð2Þ, Eqs. (24) and (25), respectively. If the

T1 and T2 clusters are obtained in some nonstandard way
rather than by performing the CCSD calculations, we
must switch to the GMMCC(2,3) and GMMCC(2,4)
approaches. According to Eq. (51), the GMMCC(2,4)
energy is calculated as follows:

EðGMMCCÞ
0 ð2; 4Þ ¼ M0ð2Þ þ hW0jfM1ð2Þ þ ½M2ð2Þ

þ T1M1ð2Þ� þ ½M3ð2Þ þ T1M2ð2Þ

þ ðT2 þ
1

2
T 2
1 ÞM1ð2Þ�

þ ½M4ð2Þ þ T1M3ð2Þ

þ ðT2 þ
1

2
T 2
1 ÞM2ð2Þ

þ ðT1T2 þ
1

6
T 3
1 ÞM1ð2Þ�gjUi=

hW0jeT1þT2 jUi : ð54Þ
If necessary, a similar expression can be written for the
GMMCC(2,3) method (cf. Eq. 51). In the case of the
GMMCC(2,4) approach, we must determine moments
Mi1i2i3

a1a2a3ð2Þ and Mi1i2i3i4
a1a2a3a4ð2Þ, Eqs. (24) and (25), respec-

tively, along with moments Mi1
a1ð2Þ and Mi1i2

a1a2ð2Þ,
Eqs. (33) and (34), respectively. We can also consider
the higher-order MMCC(2,5) and MMCC(2,6) methods
and their GMMCC(2,5) and GMMCC(2,6) analogs,
which are particularly useful in studies of multiple bond
breaking [12, 64, 65, 66] (see Sects. 3.2, 3.3) and which
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require the consideration of the Mi1i2i3i4i5
a1a2a3a4a5ð2Þ and

Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ moments, Eqs. (26) and (27), respec-

tively, along with the lower-order moments Mi1...ik
a1...ak
ð2Þ

with k < 5. Clearly, when momentsMi1
a1ð2Þ andMi1i2

a1a2ð2Þ
vanish, the GMMCC(2,4) energy expression, Eq. (54),

reduces to the MMCC(2,4) formula, Eq. (53). This can
only happen when the T1 and T2 clusters are obtained by
solving the standard CCSD equations, Eqs. (11) and
(12). In general, the GMMCC(mA;mB) and
MMCC(mA;mB) approximations are identical, when
the cluster operator T ðAÞ, Eq. (7), is obtained in the
standard CC calculations.

In order to apply the MMCC(2,3), MMCC(2,4),
GMMCC(2,4), and other (G)MMCC(mA;mB) ap-
proaches in practice, we must suggest an approximate
form of the wave function jW0i that enters Eqs. (50), (51),
(52), (53), and (54). Our interest is in relatively inexpen-
sive methods, so jW0i should be generated with one of the
inexpensive ab initio approaches. So far, we have tested
the following choices of jW0i: (1) the low-order MBPT
expressions, which result in the renormalized and com-
pletely renormalized CCSD(T) and CCSD(TQ) methods
[12, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65] and their most
recent ECCSD-based GMMCC(2,4) analog, (2) the
exponential, CC-like, expressions and their truncated
forms, which lead to the linear MMCC (LMMCC) and
QMMCC approaches [12, 64, 65, 66], and (3) the trun-
cated CI-like expressions which lead to the CI-corrected
MMCC methods [12, 55, 62, 72, 73]. The renormalized
and completely renormalized CCSD(T) methods and the
CI-corrected MMCC approaches have already been
adopted by other groups [156, 157, 158, 161]. All of these
methods and their performance in calculations involving
bond breaking are discussed in Sects. 3.1, 3.2, 3.3 and 3.4.

3.1 The renormalized and completely renormalized
CCSD(T) and CCSD(TQ) methods

In general, the R-CC and CR-CC methods are obtained
when the wave function jW0i in the MMCC(mA;mB)
energy formulas, Eqs. (49) and (50), is approximated by
the low-order MBPT expressions. For example, the CR-
CCSD[T] and CR-CCSD(T) methods are examples of
the MMCC(2,3) schemes, based on Eq. (52), in which
the wave function jW0i is replaced by the following
second-order-type, MBPT(2)[SDT]-like, expressions [12,
55, 56, 57, 58, 60, 61, 63, 64],

jWCCSD½T�
0 i ¼ ð1þ T1 þ T2 þ T ½2�3 ÞjUi ð55Þ

and

jWCCSDðTÞ
0 i ¼ jWCCSD½T�

0 i þ Z3jUi ; ð56Þ
where T1 and T2 are the singly and doubly excited
clusters obtained in the CCSD calculations, the

T ½2�3 jUi ¼ Rð3Þ0 ðVNT2ÞCjUi ð57Þ
term is an approximation of the connected triples (T3)
contribution, which is correct through second order, and

Z3jUi ¼ Rð3Þ0 VNT1jUi ð58Þ
is the disconnected triples correction, which is respon-
sible for the difference between the [T] and (T) triples
corrections. We use the usual notation, in which Rð3Þ0
designates the three-body component of the MBPT
reduced resolvent and VN is the two-body part of HN.
The CR-CCSD(TQ) methods [12, 55, 56, 57, 58, 59, 60,
61, 64] are obtained in a similar manner, by inserting the
MBPT(2)[SDTQ]-like expressions for jW0i into the
MMCC(2,4) formula, Eq. (53). For example, variant b
of the CR-CCSD(TQ) approach (the CR-CCSD(TQ),b
method [12, 55, 56, 57, 58, 59, 60, 61, 64]) is obtained by
replacing jW0i in Eq. (53) by

jWCCSDðTQÞ;b
0 i ¼ jWCCSDðTÞ

0 i þ 1

2
T 2
2 jUi ; ð59Þ

where jWCCSDðTÞ
0 i is given by Eq. (56). Other variants of

the CR-CCSD(TQ) approach (which we do not discuss
here) are possible [12, 55, 56, 57, 58, 59, 60, 61, 64].

Based on Eqs. (52), (53), (55), (56), and (59), we can
write the following compact formulas for the CR-
CCSD[T], CR-CCSD(T), and CR-CCSD(TQ),b
energies:

EðCR�CCSD½T�Þ0 ¼ EðCCSDÞ0 þ NCR½T�=D½T� ; ð60Þ

EðCR�CCSDðTÞÞ0 ¼ EðCCSDÞ0 þ NCRðTÞ=DðTÞ; ð61Þ
and

EðCR�CCSDðTQÞ;bÞ0 ¼ EðCCSDÞ0 þ NCRðTQÞ;b=DðTQÞ;b; ð62Þ
where the NCR½T�, NCRðTÞ, and NCRðTQÞ;b numerators are
defined as

NCR½T� ¼ hUjðT ½2�3 Þ
yM3ð2ÞjUi ; ð63Þ

NCRðTÞ ¼ NCR½T� þ hUjðZ3ÞyM3ð2ÞjUi ; ð64Þ
and

NCRðTQÞ;b ¼ NCRðTÞ þ 1

2
hUjðT y2 Þ

2

� ½T1M3ð2Þ þM4ð2Þ�jUi ; ð65Þ

and the D½T�, DðTÞ, and DðTQÞ;b denominators, represent-

ing the overlaps between the jWCCSD½T�
0 i, jWCCSDðTÞ

0 i, and
jWCCSDðTQÞ;b

0 i wave functions, Eqs. (55), (56), and (59),
respectively, with the CCSD ground state, are calculated
as

D½T� � hWCCSD½T�
0 jeT1þT2 jUi

¼ 1þ hUjT y1 T1jUi þ hUjT y2 T2 þ
1

2
T 2
1

� �
jUi

þ hUjðT ½2�3 Þ
yðT1T2 þ

1

6
T 3
1 ÞjUi; ð66Þ

DðTÞ � hWCCSDðTÞ
0 jeT1þT2 jUi

¼ D½T� þ hUjZy3ðT1T2 þ
1

6
T 3
1 ÞjUi; ð67Þ
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and

DðTQÞ;b � hWCCSDðTQÞ;b
0 jeT1þT2 jUi

¼ DðTÞ þ 1

2
hUjðT y2 Þ

2ð1
2
T 2
2 þ

1

2
T 2
1 T2 þ

1

24
T 4
1 ÞjUi:

ð68Þ
The R-CCSD[T], R-CCSD(T), and R-CCSD(TQ) app-

roaches are obtained by replacing moments Mi1i2i3
a1a2a3ð2Þ

and Mi1i2i3i4
a1a2a3a4ð2Þ, entering Eqs. (60), (61), and (62)

through the M3ð2ÞjUi and M4ð2ÞjUi quantities (cf.

Eq. (29)), by their lowest-order estimates. For example,

the R-CCSD[T] and R-CCSD(T) methods are obtained
from the CR-CCSD[T] and CR-CCSD(T) formulas,
Eqs. (60) and (61), by replacing moments Mi1i2i3

a1a2a3ð2Þ
defining M3ð2ÞjUi in Eqs. (63) and (64), respectively, by

hUa1a2a3
i1i2i3 jðVNT2ÞCjUi. Thus, the R-CCSD[T] and

R-CCSD(T) energies are calculated as [12, 55, 56, 57, 58,
60, 61, 64]

EðR�CCSD½T�Þ0 ¼ EðCCSDÞ0 þ N ½T�=D½T� ð69Þ
and

EðR�CCSDðTÞÞ0 ¼ EðCCSDÞ0 þ N ðTÞ=DðTÞ; ð70Þ
where

N ½T� ¼ hUjðT ½2�3 Þ
yðVN T2ÞCjUi; ð71Þ

N ðTÞ ¼ N ½T� þ hUjðZ3ÞyðVNT2ÞCjUi; ð72Þ
and D½T� and DðTÞ are defined by Eqs. (66) and (67),
respectively. The R-CCSD(TQ) energy expressions are

obtained in an analogous manner by approximating

moments Mi1i2i3
a1a2a3ð2Þ and Mi1i2i3i4

a1a2a3a4ð2Þ, defining the

M3ð2ÞjUi and M4ð2ÞjUi quantities in the CR-CCSD(TQ)

formulas, such as Eq. (62), by their lowest-order esti-
mates. We could, for example, use hUa1a2a3

i1i2i3 jðVNT2ÞCjUi or
hUa1a2a3

i1i2i3 j½VNðT2 þ 1
2T

2
2 Þ�CjUi instead of Mi1i2i3

a1a2a3ð2Þ and

hUa1a2a3a4
i1i2i3i4 jfVN½12T 2

2 þ T ½2�3 �gCjUi or hUa1a2a3a4
i1i2i3i4 jð

1
2VNT 2

2 ÞCjUi
instead of Mi1i2i3i4

a1a2a3a4ð2Þ. We refer the reader to the

original papers [55, 56, 57] for further information about
the R-CCSD(TQ) methods.

It should be noticed that the N ½T� and N ðTÞ numera-
tors defining the R-CCSD[T] and R-CCSD(T) energies,
Eqs. (69) and (70), respectively, which are obtained by
simplifying the NCR½T� and NCRðTÞ numerators of the CR-
CCSD[T] and CR-CCSD(T) methods, Eqs. (63) and
(64), respectively, are identical to the noniterative triples
corrections

E½4�T ¼ hUjðT
½2�
3 Þ
yðVNT2ÞCjUi ð73Þ

and

E½5�ST ¼ hUjðZ3ÞyðVNT2ÞCjUi; ð74Þ
defining the standard CCSD[T] and CCSD(T) energies
[14, 15],

EðCCSD½T�Þ0 ¼ EðCCSDÞ0 þ E½4�T ð75Þ

and

EðCCSDðTÞÞ0 ¼ EðCCSD½T�Þ0 þ E½5�ST; ð76Þ
respectively. Indeed, we can write

N ½T� ¼ E½4�T ð77Þ
and

N ðTÞ ¼ E½4�T þ E½5�ST: ð78Þ
Thus, the R-CCSD[T] and R-CCSD(T) approximations,
which are obtained by simplifying the CR-CCSD[T] and
CR-CCSD(T) methods, reduce to the standard CCSD[T]
and CCSD(T) approaches, when the D½T� and DðTÞ

denominators in Eqs. (69) and (70) are replaced by 1
[55, 56]. A very similar relationship exists between the R-
CCSD(TQ) and CR-CCSD(TQ) methods on the one
hand and the standard CCSD(TQf) approximation of
Kucharski and Bartlett [44] on the other hand. The latter
approximation is immediately obtained by replacing the
DðTQÞ;b denominator in Eq. (62) by 1 and by replacing the
NCRðTQÞ;b numerator, Eq. (65), in the resulting equation
by one of its lowest-order estimates that has the following
form: N ðTÞ þ 1

2hUjT
y
2 ðT

ð1Þ
2 Þ

yfVN½12T 2
2 þT ½2�3 �gCjUi, where

T ð1Þ2 is the first-order MBPT estimate of T2. As we can
see, one can view the standard CCSD[T], CCSD(T), and
CCSD(TQf) approaches as the simplified (C)R-
CCSD[T], (C)R-CCSD(T), and (C)R-CCSD(TQ) meth-
ods. This analysis also shows how easy the derivations of
various noniterative CC methods become, if we decide to
employ the basic MMCC energy formula, Eq. (21).

As explained in the original papers on the R-CC and
CR-CC methods by Piecuch and Kowalski [55, 56], the
approximation of the D½T�, DðTÞ, and DðTQÞ;b denomina-
tors by 1, as described earlier, has some merit to it from
the point of view of MBPT, provided that the T1 and T2

cluster amplitudes are small, which is usually the case for
the nondegenerate electronic states (e.g., molecules near
their equilibrium geometries), for which the MBPT ser-
ies rapidly converges. One can easily verify that the D½T�,
DðTÞ, and DðTQÞ;b denominators equal 1 plus terms that
are at least of the second order in the perturbation VN

(see Eqs. 66, 67, 68; if we ignore 1, the lowest-order
hUjT y2 T2jUi term in Eqs. 66, 67, and 68 contains the
second- and higher-order contributions in VN). The sit-
uation changes, when the configurational quasidegener-
acy or nondynamic correlation effects become sizable
and the MBPT series no longer converges, as is usually
the case for stretched nuclear geometries. In this case,
the T1 and T2 cluster components become large and the
D½T�, DðTÞ, and DðTQÞ;b denominators become substan-
tially larger than 1 [56, 57]. This increase of the values of
D½T�, DðTÞ, and DðTQÞ;b at larger internuclear distances is
one of the main reasons for the observed excellent per-
formance of the CR-CCSD[T], CR-CCSD(T), and CR-
CCSD(TQ) approaches at larger internuclear distances.
One might state that the D½T� and DðTÞ denominators
damp or ‘‘renormalize’’ the excessively large values of
the noniterative triples and quadruples corrections
resulting from the standard CCSD[T], CCSD(T), and
CCSDðTQfÞ calculations at stretched nuclear geome-
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tries, which cause the poor description of bond breaking
by the CCSD[T], CCSD(T), and CCSDðTQfÞ methods
(see the discussion later for the numerical examples). The
presence of the D½T�, DðTÞ, and DðTQÞ;b denominators in
the R-CCSD[T], R-CCSD(T), CR-CCSD[T], CR-
CCSD(T), R-CCSD(TQ), and CR-CCSD(TQ) energy
expressions, which renormalize the noniterative triples
and quadruples corrections, particularly in the bond
breaking region, was a primary reason for choosing the
names ‘‘renormalized’’ or ‘‘completely renormalized’’ to
describe these approaches in the original papers by
Piecuch and Kowalski [55, 56, 57].

The apparently simple relationships between the
renormalized and completely renormalized CCSD[T],
CCSD(T), and CCSD(TQ) methods and their standard
counterparts immediately imply that the computer costs
of the R-CCSD[T], R-CCSD(T), CR-CCSD[T],
CR-CCSD(T), R-CCSD(TQ), and CR-CCSD(TQ),b
calculations are essentially identical to the costs of the
standard CCSD[T], CCSD(T), and CCSD(TQf) calcu-
lations. Thus, in analogy to the standard CCSD[T] and
CCSD(T) methods, the R-CCSD[T], R-CCSD(T), CR-
CCSD[T], and CR-CCSD(T) approaches are n3

on4u pro-
cedures in the noniterative steps involving triples and
n2on4

u procedures in the iterative CCSD steps. The CR-
CCSD[T] and CR-CCSD(T) approaches are twice as
expensive as the standard CCSD[T] and CCSD(T)
approaches in the steps involving noniterative triples
corrections, whereas the costs of the R-CCSD[T] and
R-CCSD(T) calculations are the same as the costs of the
CCSD[T] and CCSD(T) calculations [162]. The memory
and disk storage requirements characterizing the
R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-
CCSD(T) methods are essentially identical to those
characterizing the standard CCSD[T] and CCSD(T)
approaches [162]. In complete analogy to the nonitera-
tive triples corrections, the costs of the R-CCSD(TQ)
calculations are identical to the costs of the CCSD(TQf)
calculations [recall that CCSD(TQf) is an n3

on4u procedure
in the triples part and an n2on5u procedure in the non-
iterative steps involving quadruples]. Again, the
CR-CCSD(TQ),b approach and other variants of the
CR-CCSD(TQ) method [12, 55, 56, 57, 58, 59, 60, 61, 64]
are twice as expensive as the CCSD(TQf) method in the
steps involving the noniterative triples and quadruples
corrections. The formal similarity of the standard, ren-
ormalized, and completely renormalized CCSD[T],
CCSD(T), and CCSD(TQ) energy expressions greatly
facilitates the efficient computer implementation of the
R-CCSD[T], R-CCSD(T), CR-CCSD[T], CR-CCSD(T),
R-CCSD(TQ), and CR-CCSD(TQ) methods. Our highly
efficient R-CCSD[T], R-CCSD(T), CR-CCSD[T], and
CR-CCSD(T) computer codes for ground-state PESs of
singlet electronic states, described in detail in Ref. [162],
fully exploiting the idea of recursively generated inter-
mediates [117, 118], have already become an integral
part of the popular GAMESS package [163]. The efficient
implementation of the R-CCSD[T], R-CCSD(T), CR-
CCSD[T], and CR-CCSD(T) methods for nonsinglet
electronic states, based on the restricted open-shell
Hartree–Fock (ROHF) and unrestricted Hartree–Fock
(UHF) references, has largely been completed and will

be described elsewhere (see the later part of this section
for the preliminary results produced by these new open-
shell codes). Work is in progress towards completing the
highly efficient implementation of the R-CCSD(TQ) and
CR-CCSD(TQ) methods.

Apart from the relatively low computer cost of the
renormalized and completely renormalized CCSD[T],
CCSD(T), and CCSD(TQ) approaches, the main prac-
tical advantage of thesemethods is the fact that they are as
easy to use as the standard ‘‘black-box’’ approaches of the
CCSD(T) type, while allowing us to considerably improve
the description of the bond breaking region without the
need to define active orbitals or using other elements of
multireference theory. They are particularly well suited
for the description of single and double bond breaking,
including various examples of unimolecular dissociations
[12, 55, 56, 58, 60, 61, 64, 162], highly excited vibrational
term values near dissociation [12, 60, 61, 162], and
exchange chemical reactions [12, 63]. Their performance
for more complicated cases of bond breaking (e.g., the
double bond breaking in C2 or the triple bond breaking in
N2 [12, 57, 59, 61, 64]) is not as good as in various cases of
single and double bond dissociations, although the results
of the CR-CCSD(TQ) calculations for bond breaking
in C2 and N2 are quite reasonable [12, 57, 59, 61, 64]
(various ways of improving these CR-CCSD(TQ)
results are discussed in Sects. 3.2, 3.3, 3.4).

Let us begin our discussion of the performance of the
renormalized and completely renormalized CCSD[T],
CCSD(T), and CCSD(TQ) methods, employing the
spin- and symmetry-adapted RHF reference, with the
unimolecular dissociations of three closed-shell mole-
cules, namely, hydrogen fluoride, ethane, and methyl
fluoride. In the case of ethane, we are interested in the
C–C bond breaking and in the case of methyl fluoride,
we study the C–F bond breaking. In the case of hydro-
gen fluoride, for which we used a small, double zeta
(DZ) basis set [164], the R-CCSD[T], R-CCSD(T), CR-
CCSD[T], CR-CCSD(T), and CR-CCSD(TQ),b results
are compared with the results of the standard CC cal-
culations, including CCSD, CCSD[T], CCSD(T),
CCSDðTQfÞ, and CCSDT, and the exact, full CI, results
(Table 1, Fig. 1a). In the case of ethane and methyl
fluoride, for which we used the correlation-consistent
polarized valence DZ (cc-pVDZ) basis [165] and for
which the full CI results are not available, the CR-
CCSD(T) results are compared with the results of
accurate multireference CI (MRCI) and multireference
MBPT (MRMBPT) calculations reported by Schütz
[127], who used the internally contracted MRCI method
of Werner and Knowles [166, 167] with quasidegenerate
Davidson corrections [the MRCI(Q) approach] and the
second-order MRMBPT approach employing the com-
plete-active-space self-consistent-field (CASSCF) refer-
ence (CASPT2) [168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178], as implemented [179] in MOLPRO [180]
(Fig. 1b, c).

As shown in Table 1 and Fig. 1, already the simple
CR-CCSD[T] and CR-CCSD(T) methods eliminate the
unphysical humps on the ground-state PESs of the HF,
C2H6, and CH3F molecules obtained with the standard
CCSD[T], CCSD(T), and CCSDðTQfÞ approaches at
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intermediate and larger internuclear separations. At the
same time, the CR-CCSD[T] and CR-CCSD(T) methods
provide great improvements in the poor CCSD results.
For the HF, C2H6, and CH3F molecules and several
other examples of single bond breaking or simultaneous
dissociation of two single bonds (e.g., both O–H bonds
in the water molecule) [12, 56, 58, 60, 61, 64, 162], the
CR-CCSD[T] and CR-CCSD(T) methods provide an
approximately variational and uniformly accurate
description of entire PESs, including the dissociation
region. For example, the errors in the CR-CCSD[T] and
CR-CCSD(T) results, relative to the full CI (HF) or
MRCI(Q) (C2H6 and CH3F) data, do not exceed a few
millihartrees in the entire region of the H–F, C–C, and
C–F distances considered in Table 1 and Fig. 1. This
even applies to a complicated case of the C–F bond
breaking in methyl fluoride, where for the C–F distances
RC�F less than or equal to 4.0 bohr and greater than 5.5
bohr, the differences between the CR-CCSD(T) and
MRCI(Q) energies do not exceed 1–2 millihartree. For
RC�F � 5:0 bohr, the differences between the CR-
CCSD(T) and MRCI(Q) energies are around 4:5 milli-
hartree. This should be compared with the large nega-
tive, around �100 millihartree, differences between the
CCSD(T) and MRCI(Q) energies at larger values of
RC�F. In consequence, the CR-CCSD[T] and CR-
CCSD(T) methods, unlike their standard CCSD[T] and
CCSD(T) counterparts, can be used to provide reason-
able estimates of dissociation energies. For example, the
CR-CCSD(T) dissociation energies De for ethane and
methyl fluoride, calculated as differences between the
CR-CCSD(T) energies at the largest C–C and C–F dis-
tances considered here (RC�C ¼ 10:0 bohr for ethane and
RC�F ¼ 6:5 bohr for methyl fluoride) and at the corre-
sponding equilibrium values of those distances
(RC�C ¼ 2:9 bohr for ethane and RC�F ¼ 2:6 bohr for
CH3F), are 5.04 eV for C2H6 and 4.72 eV for CH3F.

These results should be compared with the MRCI(Q)
values of De for ethane and methyl fluoride, which are
4.76 and 4.72 eV, respectively, or their CASPT2
counterparts, which are 4.77 and 4.74 eV, respectively.
They should also be compared with the significantly
worse De values produced by the single-reference CCSD
approach (5.70 eV for ethane and 5.80 eV for methyl
fluoride). Similar remarks apply to the DZ model of the
HF molecule. For example, the CR-CCSD[T] and CR-
CCSD(T) methods reduce the large positive, 11.596-
millihartree, error in the CCSD result and the large
negative, �38:302- and �24:480-millihartree, errors in
the CCSD[T] and CCSD(T) results, respectively, at
RH�F ¼ 3Re (RH�F is the H–F separation in HF and Re is
the equilibrium value of RH�F) to 2.508 and 2.100 mil-
lihartree, respectively. For the considerably larger aug-
mented correlation-consistent polarized valence triple
zeta (aug-cc-pVTZ) basis set [165, 181], the errors in the
CR-CCSD(T) energies, relative to full CCSDT (the full
CCSDT approach is almost exact for single bond
breaking [51, 53]), do not exceed 3.9 millihartree [60]. In
consequence, the spectroscopic description of the HF
molecule by the CR-CCSD[T] and CR-CCSD(T) meth-
ods, including the dissociation energy De and all vibra-
tional term values, including those located near the
dissociation threshold, is excellent. As shown in Ref.
[60], the CR-CCSD(T) method reduces the 0.725-eV
error in the CCSD result for De, relative to the experi-
mentally derived value of De of 6.120 eV [182, 183], to as
little as 0.026 eV (one has to keep in mind that in this
case, even the expensive full CCSDT approach gives a
0.056-eV error [54, 60]). The CR-CCSD(T) method re-
duces the 2881- and 325-cm�1 errors in the CCSD and
full CCSDT results, respectively, for the v ¼ 19 state of
HF (the energy of this highest observed state is
49,027 cm�1 [183]) to 227 cm�1 [60]. This should be
confronted with the fact that the standard CCSD[T] and

Table 1. A comparison of the standard CC, renormalized and
completely renormalized CCSD[T], CCSD(T), and CCSD(TQ),
and CI-corrected MMCC(2,3) and MMCC(2,4) ground-state
energies with the corresponding full CI results obtained for a few
internuclear separations RH�F of the HF molecule, as described by

the double zeta (DZ) basis set [164]. The full CI total energies E are
reported as ðE þ 100Þ hartree. The CC, R-CC, CR-CC, and
MMCC/CI energies are in millihartrees relative to the correspond-
ing full CI energy values. See the Appendix for an explanation of
the acronyms

Method Ra
e 2Re 3Re 5Re

Full CIb )0.160300 )0.021733 0.014719 0.016707
CCSD 1.634 6.047 11.596 12.291
CCSDTb 0.173 0.855 0.957 0.431
CCSD[T]c )0.070 )2.725 )38.302 )75.101
CCSD(T)c 0.325 0.038 )24.480 )53.183
CCSD(TQf)

d 0.218 )0.081 )18.351 )35.078
R-CCSD[T]c )0.010 )1.127 )13.526 )23.169
R-CCSD(T)c 0.371 1.137 )6.535 )14.246
CR-CCSD[T]c 0.163 0.700 2.508 3.820
CR-CCSD(T)c 0.500 2.031 2.100 1.650
CR-CCSD(TQ),be 0.060 0.299 0.316 0.689
MMCC(2,3)/CId;f 1.195 2.708 3.669 3.255
MMCC(2,4)/CId;f 1.207 2.225 3.015 3.066

aThe equilibrium H–F bond length, Re=1.7328 bohr
bFrom Ref. [51]
cFrom Refs. [55, 56]
dFrom Ref. [62]
eFrom Ref. [12]
fThe active space consisted of the 3r, 1p, 2p, and 4r orbitals
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CCSD(T) approaches do not even support bound
vibrational states of HF with v > 12 owing to the pres-
ence of the humps on the CCSD[T] and CCSD(T) po-
tential energy curves [60].

Although we do not necessarily recommend using the
R-CCSD[T] and R-CCSD(T) methods, particularly
when the CR-CCSD[T] and CR-CCSD(T) calculations
can be afforded, it is worth mentioning that the simplest
ways of renormalizing the CCSD[T] and CCSD(T)
approaches via the R-CCSD[T] and R-CCSD(T)
approximations provide considerable improvements in
the CCSD[T] and CCSD(T) results at larger internuclear
separations (Table 1, Fig. 1a). The humps on the
R-CCSD[T] and R-CCSD(T) PESs are much smaller,
compared with the humps produced by the CCSD[T] and
CCSD(T) methods. In the case of the DZ model of the
HF molecule, the R-CCSD[T] and R-CCSD(T) methods
reduce the �38:302- and �24:480-millihartree errors in
the CCSD[T] and CCSD(T) results, respectively, at
RH�F ¼ 3Re to )13.526 millihartree in the R-CCSD[T]
case and�6:535 millihartree in the R-CCSD(T) case. For
the larger aug-cc-pVTZ basis set, the vibrational term
values resulting from the R-CCSD(T) calculations differ
from the Rydberg–Klein–Rees (RKR) [184, 185, 186,
187] values [183] by as little as 1–9 cm�1 for v � 13 (the
energy of the v ¼ 13 level is 	 41; 000 cm�1!) and we can
use the R-CCSD(T) approach to study vibrational states
with v as high as 16 [60]. None of this is possible when the
standard CCSD[T] and CCSD(T) methods are applied to
bond breaking in HF.

The CR-CCSD(TQ) approaches further improve the
CR-CCSD[T] and CR-CCSD(T) results for single and
double bond dissociations, while allowing us to obtain a
fairly reasonable description of multiple bond breaking
[12, 56, 57, 58, 60, 61, 64]. As shown in Table 1, the
CR-CCSD(TQ),b approach is capable of reducing the
0.500-, 2.031-, 2.100- and 1.650-millihartree errors in the
CR-CCSD(T) results for the DZ model of HF at
RH�F ¼ Re, 2Re, 3Re, and 5Re to the incredibly small
errors of 0.060, 0.299, 0.316, and 0.689 millihartree,
respectively. The description of the HF potential energy
curve by the CR-CCSD(TQ),b approach is significantly
better than the description of the same curve by the
corresponding CCSDðTQfÞ approach, which produces a
hump and large negative errors on the order of 20–30
millihartree at larger values of RH�F (Table 1). For the
larger aug-cc-pVTZ basis set, the CR-CCSD(TQ),b
method provides further improvement in the description
of the dissociation energy of HF by the CR-CCSD(T)
method, reducing the 0.026-eV error relative to
the experimental De value of 6.120 eV, obtained with the
CR-CCSD(T) approach, to 0.019 eV [60]. As in
the CCSD(T) versus CR-CCSD(T) case and similarly to
the calculations for the DZ basis set, the hump on the
CCSDðTQfÞ curve of HF is eliminated by the CR-
CCSD(TQ),b approach and great improvements are
observed in the calculated vibrational spectrum [60]. The
CR-CCSD(TQ),b method reduces the 227-cm�1 error in
the CR-CCSD(T) energy of the v ¼ 19 state of HF,
whose experimental or RKR energy is 49,027 cm�1, to
159 cm�1 [60]. In fact, the CR-CCSD(TQ),b potential
leads to the appearance of the v ¼ 20 vibrational level to

Fig. 1. Potential energy curves for the H–F bond breaking in a the
double zeta (DZ) HF molecule, b the C–C bond breaking in the
correlation-consistent polarized valence DZ (cc-pVDZ) model of
ethane, and c the C–F bond breaking in the cc-pVDZ model of
methyl fluoride (see the text for the remaining details and Refs. [12,
55, 56] for the original data; the CASPT2 and MRCI(Q) results for
ethane and methyl fluoride taken from Ref. [127]). See the
Appendix for an explanation of the acronyms
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be located only 28 cm�1 below the corresponding dis-
sociation threshold. The most accurate potential
function for HF to date, obtained using the hybrid
RKR-based theoretical approach (RKR plus improved
long-range plus very accurate and expensive ab initio
calculations), produces the v ¼ 20 level with the energy
of 23 cm�1 below the dissociation threshold [188, 189].
None of the existing ab initio approaches can provide
results of similar quality with the ease of use character-
izing the CR-CCSD(T) and CR-CCSD(TQ) methods.

The CR-CCSD(TQ),b and other variants [57] of the
CR-CCSD(TQ) approach are particularly useful when
multiple bonds are stretched or broken. This is shown in
Table 2 and Fig. 2, where we present the results of the
CR-CCSD(TQ),b and other calculations for the DZ
model of the nitrogen molecule. In this case, the CR-
CCSD(T) approach, which works great for single-bond
breaking, fails at larger N–N separations (Table 2),
which is a consequence of the fact that, as all multiply
bonded systems, the N2 molecule is characterized by the
large T3 and T4 effects and, for the stretched nuclear
geometries, by the nonnegligible contributions due to
higher–than–quadruply excited clusters, in addition to
huge contributions due to the T3 and T4 cluster compo-
nents [57]. The large values of higher–than–doubly
excited clusters are related to the significant nondynamic
correlation effects in N2, even in the vicinity of the
equilibrium geometry (RN�N ¼ Re; RN�N is the N–N
separation). The situation becomes particularly severe
when the N–N bond is stretched. The combined effect of
all higher–than–doubly excited clusters, as estimated by
calculating the difference between the full CI and CCSD
energies, dramatically increases with RN�N, from 8.289
millihartree at RN�N ¼ Re to 33.545 millihartree at
R ¼ 1:5Re (Table 2). In consequence, the CCSD ap-
proach, in which higher–than–doubly excited clusters are

ignored, completely fails, producing an unphysical hump
on the potential energy curve of N2 and energies that are
significantly below the corresponding full CI energies at
larger values of RN�N (Fig. 2; cf., also, Sect. 3.4). The
failure of the CCSD approach propagates into the poor
performance of the CCSD(T) and CCSDðTQfÞ approx-
imations. Indeed, the small, 2.156- and 0.323-millihar-
tree, errors in the CCSD(T) and CCSDðTQfÞ results,
relative to full CI, at RN�N ¼ Re increase (in absolute
value) to 387.448 and 334.985 millihartree, respectively,
at R ¼ 2:25Re (Table 2). As shown in Fig. 2, the CCSD(T)
approach produces a potential energy curve which falls
significantly below the full CI curve, whereas the
CCSDðTQfÞ potential energy curve is located signifi-
cantly above the full CI curve. As a matter of fact, the
nondynamic correlation effects are so big in N2 that even
the full CCSDT method and its CCSDTðQfÞ extension,
in which noniterative correction due to T4 clusters is
added to the CCSDT energy, provide a completely
erroneous description of the N2 potential (Table 2, Fig.
2). The failure of the CCSD approach also propagates
into the poor performance of the CR-CCSD(T) method.
The CR-CCSD(T) method improves the CCSD results in
the RN�N � 1:75Re region, but the overall performance
of the CR-CCSD(T) approach in the region of larger
RN�N values is poor. Because of the aforementioned
importance of the higher–than–triply excited clusters in
the region of larger N–N separations, we must go beyond
the basic MMCC(2,3) approximation, on which the CR-
CCSD(T) method is based, to achieve a satisfactory
description of the N2 dissociation within the single-ref-
erence MMCC framework.

As explained earlier, the CR-CCSD(TQ),b approach
is the lowest-order MMCC approximation beyond
MMCC(2,3) or CR-CCSD(T). The results in Table 2
and Fig. 2 show that the CR-CCSD(TQ),b approach,

Table 2. A comparison of the CCSD, CCSDT, CCSD(T),
CCSDðTQfÞ, CCSDTðQfÞ, CR-CCSD(T), CR-CCSD(TQ),b, and
CI-corrected and quadratic MMCC(2,4), MMCC(2,5), and
MMCC(2,6) ground-state energies with the corresponding full CI
results obtained for a few internuclear separations RN�N of the N2

molecule with the DZ basis set [164]. The full CI total energies E,

reported as ðE þ 108Þ, are in hartrees. The CC, CR-CC, MMCC/CI
and QMMCC energies are in millihartrees relative to the
corresponding full CI energy values. The lowest two occupied
and the highest two unoccupied orbitals were frozen in correlated
calculations

Method 0:75Re Ra
e 1:25Re 1:5Re 1:75Re 2Re 2:25Re

Full CIb )0.549027 )1.105115 )1.054626 )0.950728 )0.889906 )0.868239 )0.862125
CCSD 3.132 8.289 19.061 33.545 17.714 )69.917 )120.836
CCSDTc 0.580 2.107 6.064 10.158 )22.468 )109.767 )155.656
CCSD(T)b 0.742 2.156 4.971 4.880 )51.869 )246.405 )387.448
CCSD(TQf)

b 0.226 0.323 0.221 )2.279 )14.243 92.981 334.985
CCSDT(Qf)

c 0.047 )0.010 )0.715 )4.584 3.612 177.641 426.175
CR-CCSD(T)b 1.078 3.452 9.230 17.509 )2.347 )86.184 )133.313
CR-CCSD(TQ),bb 0.451 1.302 3.617 8.011 13.517 25.069 14.796
MMCC(2,4)/CId 1.242 2.354 5.363 11.639 10.831 )16.086 )30.720
MMCC(2,5)/CId 1.220 2.089 3.527 5.493 1.631 )24.410 )39.124
MMCC(2,6)/CId 1.217 2.022 2.909 3.186 4.048 4.443 4.552
QMMCC(2,4)e 0.458 1.384 3.916 8.362 13.074 22.091 10.749
QMMCC(2,5)e 0.384 1.012 2.365 3.756 1.415 6.672 )2.638
QMMCC(2,6)e 0.384 1.012 2.373 3.784 1.380 6.230 )3.440

aThe equilibrium bond length, Re ¼ 2:068 bohr
bFrom Ref. [57]
cFrom Ref. [59]
dFrom Ref. [12]. The active space consisted of the 3rg, 1pu, 2pu, 1pg, 2pg, and 3ru orbitals
eFrom Ref. [66]
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which is based on the MMCC(2,4) approximation and
which accounts for the combined effect of the T3 and T4

clusters, provides considerable improvements in the poor
description of the potential energy curve of N2 by the
standard CC and CR-CCSD(T) methods. As shown in
Table 2 and Fig. 2, the CR-CCSD(TQ),b method,
which, as explained earlier, is a rather simple modifica-
tion of the conventional CCSDðTQfÞ approach and
which uses, as the latter method, elements of MBPT to
estimate the T3 and T4 contributions, provides a poten-
tial energy curve which is quite close to the exact, full CI
curve. For example, the huge, 334.985-millihartree, error
in the CCSDðTQfÞ energy at R ¼ 2:25Re reduces to
14.796 millihartree when the CR-CCSD(TQ),b method
is employed (see Table 2). The CR-CCSD(TQ),b curve is
located above the full CI curve in the entire
R ¼ 0:75Re � 2:25Re region and almost all pathologies
observed in the standard single-reference CC calcula-
tions, including a nearly singular behavior of the
CCSDðTQfÞ and CCSDTðQfÞ approaches at large R
values, are eliminated when the CR-CCSD(TQ),b
method is employed. There is a small, approximately
5-millihartree, hump on the CR-CCSD(TQ),b curve, but
the overall performance of the CR-CCSD(TQ),b ap-
proach, when compared with other single-reference CC
approaches, is very good. Although there are 10–25-
millihartree errors in the CR-CCSD(TQ),b energies in
the region of larger RN�N values, the fact that we can
obtain a reasonably accurate potential energy curve for
the triply bonded N2 molecule, with the ease character-
izing the standard noniterative CC methods of the
CCSDðTQfÞ type, demonstrates the type of improve-
ments the CR-CC approaches can offer, even when
multiple bonds are broken. Further improvements in the
results for multiply bonded systems, such as N2, via the
QMMCC and CI-corrected MMCC(2,6) methods, are
discussed in Sects. 3.2, 3.3, and 3.4.

The considerable improvements in the description of
bond breaking by the CR-CC approaches are not limited
to unimolecular dissociations. We can also use the
CR-CC approaches to study ground-state PESs for ex-
change chemical reactions. This is shown in Figs. 3 and 4,
where we compare the results of the CR-CCSD(T) cal-
culations for the prototypical case of the
BeþHF! BeFþH reaction, investigated earlier by
others [190, 191, 192, 193, 194, 195, 196, 197, 198], with
the results of the CCSD(T) and full CI calculations (all
performed with the small, MIDI basis set [199]). The
detailed description of these calculations, including the
relevant numerical data, can be found elsewhere [63], so
we limit our discussion to the most important observa-
tions. We have also performed the more realistic CR-
CCSD(T) calculations with the larger basis sets of the
cc-pVTZ and correlation-consistent polarized valence
quadruple zeta (cc-pVQZ) quality, for which full CI
calculations for the BeFH system on dense grids of nu-
clear geometries required to obtain a complete repre-
sentation of the PES are too expensive [12]. Although we
provide some information about these calculations, our
discussion concentrates on the small basis set calcula-
tions reported in Ref. [63], since the main objective of this
article is to assess the potential of the CR-CCSD(T) and
other MMCC approaches by comparing, if possible, the
CR-CC and MMCC data with the exact, full CI, data.

The results shown in Figs. 3 and 4 correspond to the
collinear arrangement of the Be, F, and H atoms, with
the Be atom approaching the HF molecule from the
fluorine side. In this case, the ground electronic state
of the BeFH system is a 1Rþ state correlating with
the Beð2s2 1SÞ þHFðX 1RþÞ state of reactants,
the BeFðX 2RþÞ þHð1s1 2SÞ state of products, and the
Beð2s2 1SÞ þ Fð2p5 2PÞ þHð1s1 2SÞ state of noninter-
acting atoms. The Beð2s2 1SÞ þHFðX 1RþÞ channel,
corresponding to two closed-shell fragments, is ade-
quately described by the RHF-based CC methods. This
is no longer the case when the BeFðX 2RþÞ þHð1s1 2SÞ
products and the noninteracting Be, F, and H atoms are
examined. In these cases, the ground-state RHF con-
figuration is no longer a good reference and all standard
RHF-based CC methods fail. This is shown in Figs. 3a
and 4a, which clearly demonstrate that the RHF-based
CCSD(T) PES has the wrong topology. The differences
between the CCSD(T) and full CI PESs are particularly
large when the Be–F and H–F bonds are stretched. They
are greater than 10 millihartree (6.3 kcalmol�1) in the
entire RBe�F � 3:9 bohr and RH�F � 6:0 bohr region and
for RBe�F � 3:3 bohr and RH�F ¼ 8:0 bohr. They exceed
5 millihartree (3.1 kcalmol�1) in the RBe�F > 3:0 bohr
and RH�F � 5:0 bohr region and for RBe�F ¼ 1:8� 2:0
bohr and RH�F ¼ 2:75� 3:0 bohr. For the larger,
cc-pVTZ basis set, for which full CI results are not
available, so comparisons have to be made with accurate
multireference techniques, such as the aforementioned
MRCI(Q) approach, the differences between the
CCSD(T) and MRCI(Q) energies are as large as 120.140
millihartree (75.4 kcalmol�1), exceeding 5 kcalmol�1 for
almost all nuclear geometries from the RBe�F < 2:5 bohr
and RH�F � 2:5 bohr region, for the majority of geom-
etries from the RBe�F � 3:5 bohr and RH�F � 3:5 bohr

Fig. 2. Ground-state potential energy curves of the DZ N2

molecule (see the text for the remaining details and Refs. [12, 57,
66] for the original data)
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region, and for many geometries from the
2:5 bohr � RBe�F < 3:5 bohr and RH�F � 3:0 bohr re-
gion. The differences between the CCSD(T) and
MRCI(Q) energies resulting from the calculations with
the cc-pVTZ basis set exceed 11 kcalmol�1 in the entire
RBe�F � 5:0 bohr and RH�F � 5:0 bohr region [12]. For

the MIDI basis set used to prepare Figs. 3 and 4, the
maximum difference between the CCSD(T) and full CI
energies is 28.605 millihartree (17.9 kcalmol�1).

The CR-CCSD(T) PES, shown in Fig. 3b, is clearly
much better than the CCSD(T) PES shown in Fig. 3a.
The CR-CCSD(T) method reduces the maximum error in
the CCSD(T) results of 28.605 millihartree to 3.122 mil-
lihartree (2.0 kcalmol�1). As shown in Fig. 4b, for the

Fig. 3. The ground-state potential energy surfaces (PESs) of the
collinear BeFH system resulting from the a CCSD(T), b CR-
CCSD(T), and c full CI calculations with the MIDI basis set (see
Ref. [63] for the original data). The energies are reported in
kilocalorie per mole relative to the BeþHF reactants (the energy at
RBe�F ¼ 8:0 bohr and RH�F ¼ 1:7325 bohr; RH�F ¼ 1:7325 bohr is
the equilibrium bond length in HF). The thick contour line
corresponding to 68 kcal mol�1 separates the region where the
contour spacing is 7 kcal mol�1 from the region where the contour
spacing is 3 kcal mol�1. An extra contour line corresponding to
65.7 kcal mol�1 emphasizes the presence of the exaggerated barrier
and potential well in the product valley on the CCSD(T) PES and
the absence of those features on the CR-CCSD(T) and full CI PESs

b

Fig. 4. The differences between the a CCSD(T) and b CR-
CCSD(T) energies and the full CI energies (kcal mol�1) for the
collinear BeFH system, as described by the MIDI basis set, as
functions of the H–F and Be–F internuclear separations, RH�F and
RBe�F, respectively (see Ref. [63] for the original data)
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vast majority of nuclear geometries, the errors in the CR-
CCSD(T) results, relative to full CI, are on the order of 1
millihartree (0.6 kcalmol�1) or smaller. For the cc-pVTZ
basis set, the differences between the CR-CCSD(T) and
MRCI(Q) energies typically are 0.2–2 kcalmol�1, never
exceeding 4.1 kcalmol�1 [12]. The CR-CCSD(T) PES is
located above the exact, full CI, PES and both PESs are
virtually parallel to each other. This should be contrasted
with the nonvariational collapse of the standard
CCSD(T) theory at larger Be–F and H–F distances. A
comparison of the CR-CCSD(T) and full CI contour
plots, shown in Fig. 3b and c, respectively, indicates that
the overall description of the ground-state PES of the
BeFH system, including the reactant and product valleys,
the transition-state region, and the noninteracting atom
limit, is excellent. This is emphasized in Fig. 3 by the
thick contour lines corresponding to the energy of
68 kcalmol�1 and thin contour lines corresponding to
65.7 kcalmol�1. These lines clearly indicate the presence
of the exaggerated barrier and potential well in the
product valley on the CCSD(T) PES and the absence of
those features on the CR-CCSD(T) and full CI PESs.
The contour lines corresponding to the energies above
reactants of 88 and 91 kcalmol�1 indicate the presence of
the well-pronounced unphysical hump on the CCSD(T)
PES in the region of intermediate Be–F and H–F dis-
tances, the wrong description of the BeFþH and
Beþ FþH dissociation channels by the CCSD(T)
method, and the absence of those kinds of problems in
the CR-CCSD(T) calculations. Similar remarks apply to
the CCSD(T) versus CR-CCSD(T) calculations for
BeFH with the cc-pVTZ and cc-pVQZ basis sets [12] and
the CCSD(T) and CR-CCSD(T) calculations for other
arrangements of the Be, F, and H atoms, including the
insertion of the Be atom into the H–F bond and the
approach of HF by the Be atom from the H side, which
will all be discussed in a future paper. For example, the
CR-CCSD(T) barrier for the collinear
BeþHF! BeFþH reaction, obtained with the cc-
pVTZ basis set, is 32.2 kcalmol�1, in very good agree-
ment with the MRCI(Q) result of 31.1 kcalmol�1 [12]
and the MRCI result for this barrier reported by Aguado
et al. of 33.2 kcalmol�1 [192].

In all of these examples, we have considered bond
breaking on singlet PESs. Clearly, the dissociation of
closed-shell molecules into open-shell fragments, which
requires the unpairing of one or more electron pairs,
represents a very challenging problem for single-refer-
ence methods. However, many bond breaking phenom-
ena and many exchange reactions of interest to chemists
involve bond rearrangements in open-shell molecular
systems. For this reason, we have recently started
exploring the applicability of the renormalized and
completely renormalized CCSD[T] and CCSD(T) meth-
ods to bond breaking on nonsinglet PESs. The efficient
computer codes for the R-CCSD[T], R-CCSD(T), CR-
CCSD[T], and CR-CCSD(T) methods have been written
and several preliminary test calculations employing the
UHF or ROHF references have been performed for bond
breaking in small open-shell systems, including OH, CH,
and Fþ2 . Bond breaking in the OH and CH systems
turned out to be trivial to describe by the CR-CCSD[T]

and CR-CCSD(T) methods, so we do not discuss these
results here (the results will be published elsewhere). The
Fþ2 system turned out to be a lot more challenging for the
R-CC and CR-CC methods and, thus, much more
interesting for this discussion.

Just like its neutral F2 counterpart [50, 58], the Fþ2
molecular ion is rather difficult to describe by the single-
reference methods [200, 201, 202]. One of the interesting
and challenging problems that the single-reference
methods face, when bond breaking in Fþ2 is examined, is
the possibility of the breakdown of the inversion sym-
metry (lowering of the symmetry from D1h to C1v or
from D2h to C2v) by the UHF or ROHF calculations,
which may significantly impact the results of the corre-
lated single-reference calculations employing the UHF
or ROHF references [201, 202]. The spin- and symmetry-
adapted multi-reference methods employing the multi-
configurational SCF (MCSCF), CASSCF, and other
properly constructed multi-determinantal references do
not have such problems (cf., e.g., the MRCI calculations
for Fþ2 , employing the generalized valence bond, GVB,
references [203]), but in the single-reference calculations
one must proceed with caution. In the specific case of
Fþ2 , the single-reference methods that strictly impose the
D1h or D2h symmetry on the reference configuration
(preserving, in particular, the inversion symmetry) may
experience severe difficulties in describing the dissocia-
tion of the ground-state Fþ2 molecule into Fð2p5 2PÞ
þFþð2p4 3PÞ. As in the case of bond breaking of closed-
shell molecules into open-shell fragments, the descrip-
tion of bond breaking by the single-reference CC
methods may significantly benefit from using the spin-
and symmetry-broken UHF references [50]. This has
been demonstrated by Watts and Bartlett [202], who
showed that one can obtain a reasonable description of
the entire potential energy curve of Fþ2 with the standard
CC methods employing the symmetry-broken (C2v-
adapted) UHF reference. In analogy to the single-ref-
erence calculations for closed-shell systems employing
the symmetry-adapted RHF references, this would not
be possible if one employed the single-determinantal
reference configurations adapted to the spin and point-
group (D1h or D2h) symmetries of the Hamiltonian of
Fþ2 . Indeed, the use of the symmetry-adapted references
creates a situation, where the nondynamic correlation
effects become large and difficult to describe by the
single-reference methods, even in the region of the
intermediate stretches of the F–F bond in Fþ2 . This is
shown in Fig. 5, where we compare the results of our
preliminary CCSD, CCSD(T), and CR-CCSD(T) cal-
culations, employing the D2h-adapted ROHF reference,
with the highly accurate potential energy curve of Fþ2
obtained by us with the MRCI(Q) approach (all calcu-
lations were performed with the relatively large aug-cc-
pVTZ basis set [165, 181]). As we can see in Fig. 5, the
CCSD approach produces a potential well which is 50 %
deeper than that obtained with the MRCI(Q) approach.
The MRCI(Q) approach provides a binding energy De of
3.35 eV, which compares very well with the experimental
De value of 3.41 eV [182] and the GVB-based MRCI
value of De of 3.00 eV reported in Ref. [203]. The CCSD
method employing the symmetry-adapted ROHF refer-
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ence gives 5.10 eV, which is a considerably worse result.
The standard CCSD(T) approach, employing the D2h-
adapted ROHF reference, fails too, producing the well-
pronounced unphysical hump at RF�F � 2:5 Å (cf. Fig.
5; the equilibrium bond length Re of F

þ
2 is 1.305 Å [204]).

The depth of this hump, as measured by forming the
difference between the CCSD(T) energies at the maxi-
mum corresponding to the hump and RF�F ¼ 5Re, is
around 25 millihartree. The hump on the CCSD[T]
potential energy curve is even larger (approximately
28-millihartree deep). At larger F–F separations, the
CCSD[T] and CCSD(T) potential energy curves are
located significantly (more than 30 millihartree at
RF�F ¼ 5Re) below the MRCI(Q) curve. The differences
between the CCSD and MRCI(Q) energies at larger
values of RF�F are almost 90 millihartree at RF�F ¼ 5Re.

In view of the severe problems encountered by the
CCSD, CCSD[T], and CCSD(T) methods employing the
symmetry-adapted ROHF references, it is quite encour-
aging to see that the ROHF-based CR-CCSD(T)method,
which produces the spin- and symmetry-adapted results,
is capable of providing considerable improvements in the
description of the potential energy curve of Fþ2 . As shown
in Fig. 5, the CR-CCSD(T) potential energy curve is lo-
cated above the highly accurate MRCI(Q) curve and the
well-pronounced, approximately 25-millihartree-deep,
hump on the CCSD(T) curve is considerably reduced (to
� 4 millihartree) when the CR-CCSD(T) method is em-
ployed [we should mention that even the MRCI(Q) curve
has a small, approximately 1-millihartree-deep, hump].
The R-CCSD[T], R-CCSD(T), and CR-CCSD[T] ap-
proaches provide very similar improvements. The CR-
CCSD(T) dissociation energy De, obtained by forming
the difference between the CR-CCSD(T) energy at the
maximum corresponding to a tiny hump on the CR-
CCSD(T) potential energy curve and the CR-CCSD(T)
energy at RF�F ¼ Re is 4.00 eV. Similar calculations for

the R-CCSD[T], R-CCSD(T), and CR-CCSD[T] meth-
ods give De values of 3.75, 3.86, and 3.92 eV, respectively,
in reasonable agreement with the MRCI(Q) and experi-
mental values of 3.35 and 3.41 eV, respectively. All of
these R-CC and CR-CC values are much better than the
CCSD De value of 5.10 eV. At the same time, the R-
CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-
CCSD(T) potential energy curves for Fþ2 (which all look
very similar) have essentially the same shape as the highly
accurate MRCI(Q) curve shown in Fig. 5. The errors in
the CR-CCSD(T) results, relative to MRCI(Q), are on
the order of a fraction of a millihartree in the
RF�F ¼ 1:15� 1:20-Å region and 2–3 millihartree in the
RF�F � Re region, while monotonically increasing to
approximately 20 millihartree in the RF�F � 5Re region.
Although we may have to run the CR-CCSD(TQ) cal-
culations to improve the CR-CCSD(T) results in the
bond breaking region, the errors in the CR-CCSD(T)
results are already a lot smaller than the approximately
90-millihartree errors in the CCSD results. At the same
time, the CR-CCSD(T) description of the potential en-
ergy curve of Fþ2 is much more realistic than the
description of this curve offered by the standard
CCSD(T) approach. All of this indicates that the R-CC
and CR-CC methods show a lot of promise for future
studies of bond breaking in open-shell systems.

All of these examples show that the CR-CC methods
are capable of eliminating or considerably reducing the
failing of the standard CC methods at larger internuclear
separations. Aside from the high accuracy and the
approximately variational description that the CR-CC
methods offer over wide ranges of nuclear geometries
used in PES calculations, the major advantage of all CR-
CC approaches is the fact that we do not have to select
active orbitals in an ad hoc molecule–by–molecule
manner, which characterizes all multireference
approaches. We demonstrated that the CR-CCSD(T)
approach is sufficient for PESs involving single bond
breaking. Further improvements are offered by the
higher-order CR-CCSD(TQ) approach. The CR-
CCSD(TQ) method is also capable of providing sub-
stantial improvements in the description of multiple
bond breaking, and is often sufficient to provide high
accuracy, but the 10–25-millihartree errors that the CR-
CCSD(TQ) approach produces at larger N–N separa-
tions in the N2 molecule need to be addressed. This can
be done in a few different ways, which are described in
Sects. 3.2, 3.3, and 3.4.

3.2 The QMMCC methods

The QMMCC methods [12, 64, 65, 66] represent higher-
order extensions of the basic CR-CCSD[T],
CR-CCSD(T), and CR-CCSD(TQ) approximations,
primarily designed to improve the description of molec-
ular PESs involving multiple bond breaking by adding
noniterative corrections to the CCSD energies (as in
other MMCC methods, one might, of course, contem-
plate the QMMCC schemes in which similar corrections
are added to the energies obtained in higher-level CC
calculations; see Ref. [66] for further information). As

Fig. 5. Ground-state potential energy curves of Fþ2 , as described by
the augmented correlation-consitent polarized valence triple zeta
basis set
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one can imagine and as confirmed by us numerically,
difficult cases of multiple bond breaking may require the
explicit consideration of the pentuply and hextuply

excited moments of the CCSD equations, Mi1i2i3i4i5
a1a2a3a4a5ð2Þ

and Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ, Eqs. (26) and (27), respectively, and

the wave functions jW0i entering the MMCC equations
that contain the pentuply and hextuply excited determi-
nants, in addition to the triply and quadruply excited
moments, Mi1i2i3

a1a2a3ð2Þ and Mi1i2i3i4
a1a2a3a4ð2Þ, Eqs. (24) and

(25), respectively, used by the CR-CCSD[T], CR-
CCSD(T), and CR-CCSD(TQ) methods and other
MMCC(2,3) and MMCC(2,4) approximations. In other
words, we may have to consider the MMCC(2,5) and
MMCC(2,6) schemes, in which energies are calculated as
(cf. Eqs. (49) and (50))

EðMMCCÞ
0 ð2; 5Þ ¼ EðCCSDÞ0 þ hW0jfM3ð2Þ þ ½M4ð2Þ

þ T1M3ð2Þ� þ ½M5ð2Þ þ T1M4ð2Þ

þ ðT2 þ
1

2
T 2
1 ÞM3ð2Þ�gjUi=

hW0jeT1þT2 jUi ð79Þ
and

EðMMCCÞ
0 ð2; 6Þ ¼ EðCCSDÞ0 þ hW0jfM3ð2Þ þ ½M4ð2Þ

þ T1M3ð2Þ� þ ½M5ð2Þ þ T1M4ð2Þ

þ ðT2 þ
1

2
T 2
1 ÞM3ð2Þ� þ ½M6ð2Þ

þ T1M5ð2Þ þ ðT2 þ
1

2
T 2
1 ÞM4ð2Þ

þ ðT1T2 þ
1

6
T 3
1 ÞM3ð2Þ�gjUi=

hW0jeT1þT2 jUi ; ð80Þ
respectively, and in which moments Mi1i2i3i4i5

a1a2a3a4a5ð2Þ and
Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ enter the corresponding energy expres-
sions through the M5ð2ÞjUi and M6ð2ÞjUi quantities (cf.
Eq. 29). Based on the success of the perturbative CR-
CCSD[T], CR-CCSD(T), and CR-CCSD(TQ) approxi-
mations described in Sect. 3.1, which use the simple
MBPT(2)-like formulas for jW0i in the MMCC(2,3) and
MMCC(2,4) energy expressions (cf. Eqs. 55, 56, 57, 58
and 59), one may try to design the higher-order MMCC
schemes for multiple bond breaking, employing Eqs. (79)
and (80), by replacing jW0i in Eqs. (79) and (80) by the
MBPT(3)-like wave functions, since the MBPT(3) wave
function is the lowest-order wave function which has the
pentuply and hextuply excited components of the T2T ½2�3
and 1

6T
3
2 type that can engage the pentuply and hextuply

excited moments Mi1i2i3i4i5
a1a2a3a4a5ð2Þ and Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ. As it
turns out, the MMCC(2,5) and MMCC(2,6) methods
employingMBPT(3)-like wave functions jW0i do not lead
to the desired improvements in theCR-CCSD(TQ) results
for triple bond breaking in N2 and similar cases. A
different choice of jW0i in Eqs. (79) and (80) has to be
contemplated, if we want to improve the CR-CCSD(TQ)
results via the MMCC(2,5) and MMCC(2,6) methods,
while preserving the ease of use andblack-box character of
the noniterative CR-CCSD(TQ) and similar approaches.

The following analysis can help us to design the de-
sired approach. A direct inspection of the CR-CCSD[T]

equations, Eqs. (60), (63), and (66), and the formula for

the wave function jWCCSD½T�
0 i, Eq. (55), used to calculate

the completely renormalized triples correction in the
CR-CCSD[T] method, indicate that the CR-CCSD[T]
approach is a special case of the MMCCð2;mBÞ
approximation, in which the wave function jW0i entering
Eq. (50) (where mA is set at 2) is replaced by

jWLMMCC
0 i ¼ ð1þ RÞjUi ; ð81Þ

where the approximate cluster operator R is defined as

R ¼ T1 þ T2 þ T ½2�3 ; ð82Þ
with T1 and T2 representing the singly and doubly excited
cluster components obtained in the CCSD calculations
and T ½2�3 defined by Eq. (57). It is worth mentioning that
R, Eq. (82), represents a particularly interesting approx-
imation to the exact cluster operator T , which is correct
through the second order of the MBPT wave function
(T1 and T3 contribute, for the first time, in the second
order and T2 contributes, for the first time, in the first
order; T4, T5, etc. do not contribute in the first two orders
of MBPT). We use the acronym LMMCC in designating
the wave function jWLMMCC

0 i to emphasize the fact that
the wave function ansatz used in Eq. (81) is linear in R.
Clearly, one can view the wave function jWLMMCC

0 i,
Eq. (81), as the lowest-order approximation to the
exponential wave function

j ~W0i ¼ eRjUi : ð83Þ
One might think of using j ~W0i, Eq. (83), with R defined
by Eq. (82), instead of jW0i in the basic MMCC
formulas, Eqs. (21) and (28), but the resulting compu-
tational schemes would not be practical, since we would
have to consider all many-body terms resulting from the
presence of eR in Eq. (83), including the N -body ones,
where N is the number of electrons, to calculate the
noniterative corrections dðAÞ0 or dðCCSDÞ0 to the CC (e.g.,
CCSD) energies. However, one can consider the MMCC
approximations, in which the exponential wave function
j ~W0i, Eq. (83), is replaced by the truncated power series
expansion in R. For example, we may be able to improve
the CR-CCSD[T] and CR-CCSD(T) results by using the
wave function

jWQMMCC
0 i ¼ ð1þ Rþ 1

2
R2ÞjUi ; ð84Þ

instead of jW0i, in the formula for the correction dðCCSDÞ0 ,
Eq. (28). The jWQMMCC

0 i wave function, Eq. (84), repre-
sents a considerable improvement over the wave func-

tion jWLMMCC
0 i, Eq. (81), or jWCCSD½T�

0 i, Eq. (55), used to
define the CR-CCSD[T] method, since it contains terms

quadratic in R, in addition to the linear terms in R that

are already present in jWLMMCC
0 i or jWCCSD½T�

0 i. For the
cluster operator R defined by Eq. (82), we obtain

jWQMMCC
0 i � jWQMMCCð2;6Þ

0 i ¼ ½1þ T1 þ T2 þ
1

2
T 2
1

þ T ½2�3 þ T1T2 þ
1

2
T 2
2 þ T1T

½2�
3 þ T2T ½2�3

þ 1

2
ðT ½2�3 Þ

2�jUi : ð85Þ
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As one can see, jWQMMCC
0 i, Eq. (85), contains singly (T1),

doubly (T2 þ 1
2T

2
1 ), triply (T ½2�3 þ T1T2), quadruply

(12T
2
2 þ T1T

½2�
3 ), pentuply (T2T ½2�3 ), and hextuply (12ðT

½2�
3 Þ

2)

excited components that can engage all generalized
moments of the CCSD equations in Eq. (80). In
particular, the pentuply and hextuply excited compo-
nents of jWQMMCC

0 i can engage the pentuply and
hextuply excited moments Mi1i2i3i4i5

a1a2a3a4a5ð2Þ and
Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ, as we intended.
Equations (84) and (85) and their various approxi-

mate forms enable us to formulate the desired QMMCC
corrections to the CCSD energies that improve the re-
sults of the CR-CCSD(TQ) calculations for multiple
bond breaking through the presence of terms bilinear in
the components of R. Thus, if we replace jW0i in the

MMCC(2,6) energy formula, Eq. (80), by the wave

function jWQMMCCð2;6Þ
0 i, Eq. (85), we obtain the

QMMCC(2,6) method. In the QMMCC(2,6) approach,
which is the most complete way of correcting the CCSD
results within the QMMCC formalism, we calculate the
energy as follows [12, 64, 65, 66]:

EðQMMCCÞ
0 ð2; 6Þ ¼ EðCCSDÞ0 þ NQð2;6Þ=DQð2;6Þ; ð86Þ

where

NQð2;6Þ ¼
X6

n¼3

Xn

k¼3
hWQMMCC

0 jCn�kð2ÞMkð2ÞjUi

¼hUjf½T y1T y2 þ ðT
½2�
3 Þ
y�M3ð2Þ

þ ½1
2
ðT y2 Þ

2 þ T y1 ðT
½2�
3 Þ
y�½M4ð2Þ þ T1M3ð2Þ�

þ T y2 ðT
½2�
3 Þ
y½M5ð2Þ þ T1M4ð2Þ

þ ðT2 þ
1

2
T 2
1 ÞM3ð2Þ� þ

1

2
½ðT ½2�3 Þ

y�2½M6ð2Þ

þ T1M5ð2Þ þ ðT2 þ
1

2
T 2
1 ÞM4ð2Þ

þ ðT1T2 þ
1

6
T 3
1 ÞM3ð2Þ�gjUi ð87Þ

and

DQð2;6Þ ¼ hWQMMCC
0 jeT1þT2 jUi

¼ 1þ hUjT y1 T1jUi

þ hUj½T y2 þ
1

2
ðT y1 Þ

2�ðT2 þ
1

2
T 2
1 ÞjUi

þ hUj½T y1T y2 þ ðT
½2�
3 Þ
y�ðT1T2 þ

1

6
T 3
1 ÞjUi

þ hUj½1
2
ðT y2 Þ

2 þ T y1 ðT
½2�
3 Þ
y�ð1

2
T 2
2 þ

1

2
T 2
1 T2

þ 1

24
T 4
1 ÞjUi þ hUjT

y
2 ðT

½2�
3 Þ
yð1
2
T1T 2

2 þ
1

6
T 3
1 T2

þ 1

120
T 5
1 ÞjUi þ hUj

1

2
½ðT ½2�3 Þ

y�2ð1
6

T 3
2 þ

1

4
T 2
1 T 2

2

þ 1

24
T 4
1 T2 þ

1

720
T 6
1 ÞjUi : ð88Þ

As one can see, the QMMCC(2,6) energy expression
contains essentially all terms of the CR-CCSD[T],

CR-CCSD(T), and CR-CCSD(TQ),b methods (cf.
Eqs. 86, 87 and 88 with Eqs. 60, 61, 62, 63, 64, 65, 66,

67 and 68), in addition to the selected higher-order terms

involving the pentuply and hextuply excited T y2 ðT
½2�
3 Þ
y

and 1
2½ðT

½2�
3 Þ
y�2 bra components and moments

Mi1i2i3i4i5
a1a2a3a4a5ð2Þ and Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ. The presence of the

T y2 ðT
½2�
3 Þ
y and 1

2½ðT
½2�
3 Þ
y�2 terms in Eqs. (86), (87) and (88)

[resulting from the T2T
½2�
3 and 1

2ðT
½2�
3 Þ

2 contributions to

jWQMMCCð2;6Þ
0 i, Eq. 85] is absolutely essential for provid-

ing the desired improvements in the description of
multiple bond breaking. As shown in Refs. [12, 64, 65,
66], these higher-order terms and a specific highly
factorized many-body structure of the QMMCC(2,6)
energy expression are more important than the actual
presence of the pentuply and hextuply excited moments,
Mi1i2i3i4i5

a1a2a3a4a5ð2Þ and Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ, respectively, in

Eqs. (86), (87) and (88).
Along with the complete QMMCC(2,6) scheme, we

can also consider approximate QMMCC methods, such
as QMMCC(2,5), QMMCC(2,4), and QMMCC(2,3).

The QMMCC(2,5) method is obtained by neglecting the
1
2½ðT

½2�
3 Þ
y�2 terms in Eqs. (86), (87) and (88) or, simply, by

replacing the wave function jW0i in the MMCC(2,5)
energy formula, Eq. (79), by

jWQMMCCð2;5Þ
0 i ¼ ½1þ T1 þ T2 þ

1

2
T 2
1 þ T ½2�3 þ T1T2

þ 1

2
T 2
2 þ T1T ½2�3 þ T2T

½2�
3 �jUi : ð89Þ

As shown in a later part of this section, the apparent

absence of the Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ moments and the

1
2½ðT

½2�
3 Þ
y�2 components in the QMMCC(2,5) energy

expression has almost no effect on the excellent results
of the QMMCC calculations for multiple bond breaking
in N2. The QMMCC(2,4) approach is obtained by

neglecting the T y2 ðT
½2�
3 Þ
y terms in the QMMCC(2,6)

energy formulas, Eqs. (86), (87) and (88), and the
1
2½ðT

½2�
3 Þ
y�2 terms that have already been neglected in the

QMMCC(2,5) approach or, simply, by replacing the

wave function jW0i in the MMCC(2,4) energy formula,
Eq. (53), by

jWQMMCCð2;4Þ
0 i ¼ ½1þ T1 þ T2 þ

1

2
T 2
1 þ T ½2�3 þ T1T2

þ 1

2
T 2
2 þ T1T

½2�
3 �jUi : ð90Þ

In analogy to the CR-CCSD(TQ),b approach, the
QMMCC(2,4) method requires that we only consider
the tri- and tetraexcited moments of the CCSD
equations, Mi1i2i3

a1a2a3ð2Þ and Mi1i2i3i4
a1a2a3a4ð2Þ, respectively. In

fact, the QMMCC(2,4) and CR-CCSD(TQ),b energy
expressions and the results of the QMMCC(2,4) and
CR-CCSD(TQ),b calculations are almost identical.
Finally, the QMMCC(2,3) approach is obtained by

ignoring the ½12ðT
y
2 Þ

2 þ T y1 ðT
½2�
3 Þ
y� terms in the

QMMCC(2,4) approximation, i.e. by replacing the wave
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function jW0i in the MMCC(2,3) energy formula,
Eq. (52), by

jWQMMCCð2;3Þ
0 i ¼½1þ T1 þ T2 þ

1

2
T 2
1 þ T ½2�3

þ T1T2�jUi : ð91Þ
It is easy to verify that the QMMCC(2,3) and CR-
CCSD[T] or CR-CCSD(T) energy formulas are practi-
cally identical. In particular, the only moments of the
CCSD equations that are included in the QMMCC(2,3)
calculations are the triply excited Mi1i2i3

a1a2a3ð2Þ moments.
The QMMCC(2,3) results are virtually identical to the
CR-CCSD[T] or CR-CCSD(T) results. In particular, in
analogy to the CR-CCSD[T] and CR-CCSD(T) ap-
proaches, the QMMCC(2,3) method is not sufficient to
describe multiple bond breaking, although the
QMMCC(2,3) results for single bond breaking are as
good as those obtained with the CR-CCSD[T] and CR-
CCSD(T) approaches. Because of the similarity of the
QMMCC(2,3) and CR-CCSD[T] or CR-CCSD(T)
results, we do not discuss the results of the
QMMCC(2,3) calculations in this article.

The formal similarity of the QMMCC(2,4) and CR-
CCSD(TQ),b approximations implies that the computer
costs of the QMMCC(2,4) and CR-CCSD(TQ),b cal-
culations are essentially identical. Thus, in analogy to
the CR-CCSD(TQ),b method and its standard
CCSDðTQfÞ counterpart, the cost of calculating the
QMMCC(2,4) correction to CCSD energy is n2on5

u. The
QMMCC(2,5) and QMMCC(2,6) methods are some-
what more expensive, although, as already mentioned,
we can ignore the most expensive pentuply and hextuply
excited moments, Mi1i2i3i4i5

a1a2a3a4a5ð2Þ and Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ, re-

spectively, in the QMMCC(2,5) and QMMCC(2,6) en-
ergy expressions without affecting the excellent
QMMCC(2,5) and QMMCC(2,6) results. The most ex-
pensive steps of the full QMMCC(2,6) approximation,
on which all other QMMCC methods are based, scale as
n3on5

u. The relatively low, n8-like, cost of computing the
noniterative QMMCC(2,6) energy correction may be
somewhat surprising, since the hextuply excited mo-
ments Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ entering Eq. (87) through
M6ð2ÞjUi are 12-index quantities with a few additional
internal summations, but one has to recognize the highly
factorized character of the QMMCC(2,6) energy cor-
rections. For example, the most expensive
1
2hUj½ðT

½2�
3 Þ
y�2M6ð2ÞjUi term of the QMMCC(2,6)

approach can be rewritten as

1

2
hUj½ðT ½2�3 Þ

y�2M6ð2ÞjUi

¼ 1

48
hUj½ðT ½2�3 Þ

y�2ðVNT 4
2 ÞCjUi ; ð92Þ

since (cf. Eq. 27)

Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ ¼

1

24
hUa1a2a3a4a5a6

i1i2i3i4i5i6 jðVNT 4
2 ÞCjUi : ð93Þ

The highly factorized character of Eq. (92), resulting
from the factorization of the hextuple excitations in
jWQMMCCð2;6Þ

0 i, Eq. (85), into a product of two T ½2�3
clusters, allows us to form the intermediates from the

ðT ½2�3 Þ
y deexcitation and T2 excitation cluster amplitudes

by connecting the ðT ½2�3 Þ
y and T2 diagrams with at least

two fermion lines. In consequence, we do not have to
construct and store the 12-index hextuply excited
moments Mi1i2i3i4i5i6

a1a2a3a4a5a6ð2Þ to calculate terms such as
Eq. (92). This leads to a considerable reduction of the
computer cost to the n3on5

u or less expensive noniterative
steps. Similar remarks apply to the QMMCC(2,5)
theory. Again, all terms entering the QMMCC(2,5)
energy formula are highly factorized and we can
completely eliminate the need for calculating and storing
the ten-index quantities, such as Mi1i2i3i4i5

a1a2a3a4a5ð2Þ, by

connecting the T y2 and ðT ½2�3 Þ
y deexcitation vertices of

the T y2 ðT
½2�
3 Þ
y term, resulting from the presence of T2T ½2�3 in

jWQMMCCð2;5Þ
0 i, Eq. (89), with the T1 and T2 excitation

vertices entering Mi1i2i3i4i5
a1a2a3a4a5ð2Þ, Eq. (26), to form the

relevant intermediates.
Let us illustrate the performance of the QMMCC

approximations using a difficult case of triple bond
breaking in N2 as an example. The results of the
QMMCC calculations for the DZ model of N2 are
shown in Table 2 and Fig. 2. As we can see, the
QMMCC(2,5) and QMMCC(2,6) methods provide an
excellent description of the entire RN�N ¼
0:75Re � 2:25Re region of the N2 potential energy curve.
The large negative errors in the CCSD results for N2 in
the RN�N > 1:75Re region and the 13.517-, 25.069-, and
14.796-millihartree errors in the CR-CCSD(TQ),b re-
sults at RN�N ¼ 1:75Re, 2Re, and 2:25Re are reduced by
the QMMCC(2,6) method to 1.380, 6.230, and �3.440
millihartree, respectively. This is quite remarkable,
considering the single-reference and noniterative char-
acter of the QMMCC energy corrections, their relatively
low, n3on5

u-like, computer cost, and the complete failure
of the CCSD and other standard CC methods at larger
internuclear separations. What is even more interesting
is the excellent performance of the QMMCC(2,5)

method, in which the Mi1i2i3i4i5i6
a1a2a3a4a5a6ð2Þ moments are not

considered. As shown in Table 2, the QMMCC(2,5) and
QMMCC(2,6) results are essentially identical. One can,
in fact, show that the QMMCC(2,5) and QMMCC(2,6)
results almost do not change if we ignore the pentuply
and hextuply excited moments of the CCSD equations in
the QMMCC(2,5) and QMMCC(2,6) energy expressions
and retain the specific many-body structure of these
expressions [12, 64, 65, 66].

Interestingly enough, the QMMCC(2,5) and
QMMCC(2,6) potential energy curves for N2 are located
above the full CI curve in the entire RN�N < 2:25Re re-
gion, in spite of the apparently nonvariational behavior
of the CCSD method at larger N–N separations. The
approximate dissociation energies, calculated by form-
ing the difference between the QMMCC(2,5) and
QMMCC(2,6) energies at RN�N ¼ 4:35 bohr and
RN�N ¼ Re ¼ 2:068 bohr, are 6.61 and 6.59 eV, in ex-
cellent agreement with the full CI value of De of 6.61 eV
[the QMMCC(2,5) and QMMCC(2,6) potentials are
monotonically increasing functions of R in the entire
2:068 bohr � R � 4:35 bohr region]. Thus, the
QMMCC(2,5) and QMMCC(2,6) methods are the
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quasivariational approaches, which are capable of pro-
viding an excellent description of the large portion of the
potential energy curve of N2. The formal explanation of
this quasivariational character of the QMMCC results
can be found in Refs. [12, 65, 66].

As expected, the QMMCC(2,4) results for N2 are
essentially identical to those obtained with the CR-
CCSD(TQ),b approach (Table 2). This finding implies

that we cannot neglect the T y2 ðT
½2�
3 Þ
y terms in the

QMMCC(2,6) or QMMCC(2,5) energy expressions if we
want to obtain an accuracy of a few millihartrees for
triple bond breaking. Similar findings are true for other
cases of bond breaking. For example, the errors in the
QMMCC(2,5) and QMMCC(2,6) results for the double
dissociation of the water molecule, where both O–H
bonds are simultaneously stretched by a factor of 1.5 or
2, are on the order of 0.2–0.7 millihartree. These very
small errors increase to 2–3-millihartree, when the CR-
CCSD(TQ),b and QMMCC(2,4) methods are applied to
a situation where both O–H bonds in water are stretched
by a factor of 2 [12, 64, 66]. The 2–3-millihartree errors
in the CR-CCSD(TQ),b and QMMCC(2,4) results are
much smaller than the errors obtained in the standard
CCSD[T], CCSD(T), and CCSDðTQfÞ calculations, but
they are considerably bigger than the 0.2–0.7-milli-
hartree errors produced by the higher-order
QMMCC(2,5) and QMMCC(2,6) calculations.

In summary, we can state that the QMMCC(2,4)
approach is similar in content and computer cost to the
CR-CCSD(TQ),b method discussed in Sect. 3.1. The
higher-order and more complete QMMCC(2,5) and
QMMCC(2,6) approximations are clearly superior
compared with the CR-CCSD(TQ),b or QMMCC(2,4)
approaches in studies of multiple bond breaking. Thus,
the CR-CCSD(TQ),b or QMMCC(2,4) methods can be
regarded as intermediate steps between the less accurate
CR-CCSD[T] or CR-CCSD(T) approaches, which
work well for single bond breaking, and the more ac-
curate QMMCC(2,5) and QMMCC(2,6) approaches,
which are capable of providing an accurate description
of the PESs involving multiple bond stretching or
breaking. The QMMCC methods provide us with a
systematic way of improving the accuracy of the CR-
CC calculations. This can be summarized by the fol-
lowing accuracy patterns that are clearly reflected in the
actual calculations:

CR-CCSD½T� �CR-CCSDðTÞ � QMMCCð2; 3Þ
<CR-CCSDðTQÞ; b � QMMCCð2; 4Þ
<QMMCCð2; 5Þ � QMMCCð2; 6Þ
<full CI: ð94Þ

In analogy to the CR-CCSD[T], CR-CCSD(T), and
CR-CCSD(TQ) methods, the QMMCC approaches can
be viewed as black-box computational schemes, which
are as easy to use as the standard noniterative CC ap-
proximations of the CCSD(T) or CCSDðTQfÞ type. The
QMMCC(2,5) and QMMCC(2,6) approaches are more
expensive than the CR-CCSD[T], CR-CCSD(T), and
CR-CCSD(TQ) methods, although the noniterative n3

on5u
steps used to define the QMMCC(2,5) and

QMMCC(2,6) energy corrections are relatively in-
expensive, particularly considering the fact that one can
use these methods to accurately describe multiple bond
stretching or breaking. One should keep in mind that the
full CCSDT approach, which is an iterative n3on5

u meth-
od, fails to describe bond breaking in N2, providing re-
sults which are considerably worse than those obtained
with the QMMCC(2,5) and QMMCC(2,6) approaches
at all N–N separations; see Table 2 and Fig. 2. A po-
tentially less expensive alternative to the QMMCC
methods, based on combining the MMCC and ECC
concepts, is described in Sect. 3.4. In the next section, we
discuss the CI-corrected MMCC methods, where savings
in the computer costs in studies involving single and
multiple bond breaking are achieved by combining the
MMCC theory with the limited CI approximations of
the multireference type.

3.3 The CI-corrected MMCC methods

The MMCC theory is a flexible formalism, in which the
wave function jW0i, entering Eq. (21), (28), or (50), does
not have to originate from the CC or MBPT
calculations. The possibility of using the non-CC or
non-MBPT wave functions jW0i in the MMCC equa-
tions gives us an opportunity of improving the MMCC
results in all these cases where the MBPT/CC-like
choices of jW0i defining the CR-CC and QMMCC
approximations do not lead to the desired accuracies.

In the spirit of the externally corrected CC methods
introduced by Paldus and coworkers [9, 20, 21, 108, 109,
110, 111, 112, 113, 205, 206, 207, 208] (see, also, Ref.
[209]), we can develop a wide category of the externally
corrected MMCC approximations, in which the wave
functions jW0i entering the MMCC(mA;mB) energy ex-
pressions, Eqs. (49) and (50), are obtained in some rela-
tively inexpensive ab initio calculations that are not
related to a CC calculation whose results we are trying to
improve with theMMCC(mA;mB) correction d0ðmA;mBÞ.
We can, for example, consider the MMCC(mA;mB)
methods, in which the wave function jW0i entering
Eqs. (49) and (50) is obtained in relatively inexpensive
limited CI calculations. All externally corrected MMCC
approximations, in which the wave function jW0i is a
limited CI wave function of the single-reference or mul-
tireference type, are referred to as the CI-corrected
MMCC (MMCC/CI) approaches. We can also con-
template the CASSCF- or CASPT2-corrected
MMCC(mA;mB) approaches, in which the wave function
jW0i entering Eqs. (49) and (50) is obtained in CASSCF
or CASPT2 calculations (P. Piecuch, K. Kowalski,
M. Lodriguito, unpublished results).

The CI-corrected MMCC methods were originally
proposed and tested in Ref. [55]. They were further de-
veloped and extended to excited electronic states in Refs.
[12, 62, 72, 73]. A few types of the CI-corrected MMCC
methods, limited to the ground-state problem, based on
the general recipes described earlier in Refs. [55, 56],
have recently been implemented by Li and Paldus [156,
157, 158] (somewhat unfortunately, under a different
name of the ‘‘energy-corrected CC approaches’’). In this
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section, we discuss the CI-corrected MMCC methods for
ground electronic states. The CI-corrected MMCC ap-
proaches for excited states are discussed in Sect. 4.2.

A variety of limited CI techniques could be used to
generate jW0i in the MMCC(mA;mB) energy expressions.
Because of our interest in the bond breaking problem, in
this section we focus on a few simple choices of jW0i
resulting from performing the multireference-like, but
really single-reference, CI calculations that guarantee the
qualitatively correct description of bond breaking. We
might, of course, use the traditional MRCI approaches
to generate jW0i. The problem with this is that MRCI
calculations are usually a lot more expensive than the
CC calculations we are trying to improve. Thus, in the
following, we focus on the idea of defining jW0i via the
so-called active-space CI methods [55], in which we use
the concept of active orbitals, originating from the
multireference formalism, to select the dominant higher–
than–doubly excited components of the single-reference
CI wave function.

Our main interest is in improving poor CCSD results
in the bond breaking region by adding the MMCC(2,3),
MMCC(2,4), MMCC(2,5), and MMCC(2,6) corrections
to the CCSD energies, as described by Eqs. (52), (53),
(79), and (80), respectively. In order to define the cor-
responding wave functions jW0i that can be used to
determine the MMCC(2,3), MMCC(2,4), MMCC(2,5),
and MMCC(2,6) energies and that guarantee the quali-
tatively correct description of bond breaking, we divide
the available spin-orbitals into four groups (Fig. 6) of
core spin-orbitals (i1, i2, . . .), active spin-orbitals occu-
pied in reference jUi (I1, I2, . . .), active spin-orbitals
unoccupied in reference jUi (A1, A2, . . .), and virtual
spin-orbitals (a1, a2, . . .). The choice of active spin-or-
bitals (typically, a few highest-energy occupied spin-or-
bitals and a few lowest-energy unoccupied spin-orbitals)
is dictated by the type of bond breaking (single, double,
etc.) that we are trying to describe. For example, the
qualitatively correct description of single bond breaking
in the HF molecule is obtained if the 3r, 1p, and 2p
occupied and 4r unoccupied orbitals, correlating with

the 1s and 2p shells of the H and F atoms, respectively,
are chosen as active orbitals. The qualitatively correct
description of triple bond breaking in N2 requires the
presence of the 3rg, 1pu, 2pu, 1pg, 2pg, and 3ru orbitals,
correlating with the 2p shells of the N atoms, in the
active orbital space, etc.

Once active spin-orbitals are selected, we can define
the following CI wave functions jW0i for the CI-cor-
rected MMCC(2,3), MMCC(2,4), MMCC(2,5), and
MMCC(2,6) calculations:

jWCISDt
0 i ¼ ðC0 þ C1 þ C2 þ c3ÞjUi ; ð95Þ

jWCISDtq
0 i ¼ ðC0 þ C1 þ C2 þ c3 þ c4ÞjUi ; ð96Þ

jWCISDtqp
0 i ¼ ðC0 þ C1 þ C2 þ c3 þ c4 þ c5ÞjUi ; ð97Þ

jWCISDtqph
0 i ¼ ðC0 þ C1 þ C2 þ c3 þ c4 þ c5 þ c6ÞjUi ;

ð98Þ
where C0jUi, C1jUi, and C2jUi are the usual reference,
singly excited, and doubly excited contributions, respec-
tively, and

c3jUi ¼
X

i1<i2<I3

a1>a2>A3

ci1i2I3
a1a2A3

Ea1a2A3

i1i2I3
; ð99Þ

c4jUi ¼
X

i1<i2<I3<I4

a1>a2>A3>A4

ci1i2I3I4
a1a2A3A4

Ea1a2A3A4

i1i2I3I4 ; ð100Þ

c5jUi ¼
X

i1<i2<I3<I4<I5

a1>a2>A3>A4>A5

ci1i2I3I4I5
a1a2A3A4A5

Ea1a2A3A4A5

i1i2I3I4I5 ; ð101Þ

and

c6jUi ¼
X

i1<i2<I3<I4<I5<I6

a1>a2>A3>A4>A5>A6

ci1i2I3I4I5I6
a1a2A3A4A5A6

Ea1a2A3A4A5A6

i1i2I3I4I5I6
ð102Þ

are the excitation operators generating the relevant

higher–than–doubly excited components of jWCISDt
0 i,

jWCISDtq
0 i, jWCISDtqp

0 i, and jWCISDtqph
0 i. As one can see,

the CISDt wave function jWCISDt
0 i, Eq. (95), used in the

CI-corrected MMCC(2,3) [MMCC(2,3)/CI] calcula-
tions, includes all singles and doubles from the reference
configuration jUi and a relatively small set of internal
and semiinternal triples containing at least one active
occupied and one active unoccupied spin-orbital indices
(cf. Eq. 99). The CISDtq wave function jWCISDtq

0 i,
Eq. (96), used in the CI-corrected MMCC(2,4)
[MMCC(2,4)/CI] calculations, includes all singles and
doubles from jUi, a relatively small set of internal and
semiinternal triples containing at least one active
occupied and one active unoccupied spin-orbital
indicies and a relatively small set of quadruples contain-
ing at least two active occupied and two active
unoccupied spin-orbital indices (cf. Eqs. 99, 100). The

Fig. 6. The orbital classification used in the active-space CI and the
CI-corrected MMCC(2,3), MMCC(2,4), MMCC(2,5), and
MMCC(2,6) approaches discussed in this article. Core, active,
and virtual orbitals are represented by solid, dashed, and dotted
lines, respectively. Full and open circles represent core and active
electrons of the reference configuration jUi (the closed-shell
reference is assumed)
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CISDtqp wave function jWCISDtqp
0 i, Eq. (97), used in the

CI-corrected MMCC(2,5) [MMCC(2,5)/CI] calculations
includes a relatively small set of internal and semi-
internal pentuples, defined by Eq. (101), in addition to

singles, doubles, triples, and quadruples included in

jWCISDtq
0 i, Eq. (96). Finally, the CISDtqph wave func-

tion jWCISDtqph
0 i, Eq. (98), used in the CI-corrected

MMCC(2,6) [MMCC(2,6)/CI] calculations includes a
relatively small set of internal and semiinternal pentuples
and hextuples, defined by Eqs. (101) and (102),

respectively, in addition to singles, doubles, triples, and

quadruples included in jWCISDtq
0 i, Eq. (96). The CI

coefficients defining the CISDt, CISDtq, CISDtqp, and
CISDtqph wave functions are determined variationally.
It is worth mentioning that this selection of higher–
than–doubly excited determinants in the CISDt,
CISDtq, CISDtqp, and CISDtqph wave functions is
analogous to the selection of higher–than–doubly
excited cluster amplitudes in the highly successful
active-space CC or state-selective MRCC methods
developed by Adomowicz, Piecuch, Oliphant, and their
coworkers [51, 53, 54, 58, 69, 70, 71, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104].

Although the CI-corrected MMCC methods are not
as easy to use as the CR-CC and QMMCC approaches,
since one has to define active orbitals to select higher–
than–doubly excited components of jW0i, they offer
several advantages that can be very useful in calculations
of molecular PESs involving bond breaking. One of the
main advantages of the CI-corrected MMCC schemes is
a very good control of the quality of the wave function
jW0i, used to construct the noniterative corrections
d0ðmA;mBÞ, which is accomplished through the judicious
choice of active orbitals that can always be adjusted to a
given type of bond breaking. Another advantage of the
CI-corrected MMCC methods is their relatively low
computer cost, which is a consequence of the fact that it is
usually sufficient to use very small active orbital spaces to
obtain an accurate description of bond breaking. The
relatively low cost of the CI-corrected MMCC calcula-
tions is illustrated here by using the CI-corrected
MMCC(2,3) approach as an example. In this case, we use
the CISDt wave function jWCISDt

0 i, Eq. (95), to construct
the MMCC(2,3) correction d0ð2; 3Þ to the CCSD energy.
By replacing the wave function jW0i in the general
MMCC(2,3) formula, Eq. (52), by jWCISDt

0 i, we obtain
the following expression for the MMCC(2,3)/CI energy:

EðMMCC=CIÞ
0 ð2; 3Þ ¼ EðCCSDÞ0

þ
X

i1<i2<I3
a1>a2>A3

ci1i2I3
a1a2A3

Mi1i2I3
a1a2A3

ð2Þ=

hWCISDt
0 jeT1þT2 jUi; ð103Þ

where ci1i2I3
a1a2A3

are the CI coefficients obtained in the CISDt
calculations,Mi1i2I3

a1a2A3
ð2Þ are the triexcited moments of the

CCSD equations defined by Eq. (24), and T1 and T2 are
the singly and doubly excited cluster components
obtained in the CCSD calculations. As one can see, we
do not have to determine the entire set of the triexcited

moments Mi1i2i3
a1a2a3ð2Þ in the MMCC(2,3)/CI calculations.

This alone leads to considerable savings in the computer
effort. Indeed, if No (Nu) is the number of active orbitals
occupied (unoccupied) in jUi, we only have to construct
NoNun2on2u moments Mi1i2I3

a1a2A3
ð2Þ, which is a small fraction

of all n3on3
u moments Mi1i2i3

a1a2a3ð2Þ when No 
 no and

Nu 
 nu. Moreover, the n3
on4u steps related to the

construction of all moments Mi1i2i3
a1a2a3ð2Þ reduce to the

n5-like NoNun2
on3u steps in the MMCC(2,3)/CI calcula-

tions. There is an additional cost related to the CISDt
calculations, needed to generate the jWCISDt

0 i wave
function, but again the usual n3

on5u steps of the parent
CI singles, doubles, and triples (CISDT) approach reduce
to considerably less expensive NoNun2on4

u steps in the
CISDt case. All these factors contribute to the relatively
low cost of the MMCC(2,3)/CI calculations. The number
of triples used in the CI-corrected MMCC(2,3) calcula-
tions is usually very small (no more than 30% of all
triples; sometimes even less than that [12, 62, 72, 73]). The
CPU times required to construct the relevant corrections
d0ð2; 3Þ to CCSD energies are often on the order of the
CPU time of a single CCSD iteration [12, 62, 72, 73]. The
CI-corrected MMCC(2,4), MMCC(2,5), and
MMCC(2,6) calculations are obviously more expensive,
but again a considerable reduction in the computer effort
is observed when the MMCC(2,4)/CI, MMCC(2,5)/CI,
and MMCC(2,6)/CI methods are used in practice. It is
also worth mentioning that the CI-corrected MMCC
methods can be generalized to excited states in a rather
straightforward fashion via the EOMCC formalism (see
Sect. 4.2), which is another advantage of the CI-corrected
MMCC approaches.

Our experience to date indicates that it is sufficient to
use the simplest MMCC(2,3)/CI approach in studies of
PESs involving single bond breaking [12, 55, 62, 72]. This
is illustrated in Table 1, where we examine the MMCC/
CI results for single bond breaking in the HF molecule,
as described by the DZ basis set. As one can see, the
MMCC(2,3)/CI approach, employing a very small active
space consisting of only four valence orbitals of HF and
the ground-state RHF determinant as a reference, re-
duces the 12 and 24–53-millihartree unsigned errors in
the CCSD and CCSD(T) results in the RH�F ¼ 3Re � 5Re

region to 3–4 millihartree. The CISDt approach, on
which the MMCC(2,3)/CI method is based, produces
much larger errors (29–34 millihartree). In analogy to the
CR-CCSD[T] and CR-CCSD(T) approaches, which are
also based on the MMCC(2,3) approximation, the
MMCC(2,3)/CI method eliminates the well-pronounced
humps on the CCSD[T] and CCSD(T) potential energy
curves. Thus, the MMCC(2,3)/CI method combines two
relatively poor pieces of information (the T1 and T2

cluster components obtained in the CCSD calculations
and the CISDt wave function) to produce an excellent
description of the entire potential energy curve of HF.
The MMCC(2,4)/CI approach provides some improve-
ments in the MMCC(2,3)/CI results, but these improve-
ments are not particularly impressive, particularly
considering the fact that the MMCC(2,4)/CI calculations
are more expensive than the MMCC(2,3)/CI calcula-
tions. This seems to be the case in other cases of single
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bond breaking. The CI-corrected MMCC(2,4) approach
becomes more important when double bond dissociation
is examined, providing a more balanced description of
the ground-state potential energy curves in the region of
stretched nuclear geometries [12, 62], but neither the
MMCC(2,3)/CI theory nor its MMCC(2,4)/CI extension
is sufficient when more complicated types of multiple
bond breaking are examined. This is shown in Table 2
(see, also, Fig. 2), where we examine the results of the
MMCC/CI calculations for a challenging case of triple
bond breaking in N2.

As demonstrated in Table 2, the MMCC(2,4)/CI
method works well for the N–N separations RN�N not
exceeding 1:75Re, but the MMCC(2,4)/CI results for
RN�N > 1:75Re are not good (we do not show the
MMCC(2,3)/CI results, since they are even worse than
those obtained with the MMCC(2,4)/CI approach in the
RN�N > 1:75Re region). In particular, the MMCC(2,4)/
CI method suffers from the nonvariational collapse in
the RN�N > 1:75Re region, similar to that characterizing
the CCSD and CCSD(T) approximations, although the
MMCC(2,4)/CI results for RN�N > 1:75Re, character-
ized by the unsigned errors of 16–31 millihartree, are a
lot better than the results of the CCSD, CCSDT,
CCSD(T), CCSD(TQf), and CCSDT(Qf) calculations,
which give huge errors on the order of 100 millihartree at
larger N–N distances. The CR-CCSD(TQ),b and
QMMCC(2,4) methods discussed in the earlier sections,
which are also based on the MMCC(2,4) approximation,
seem to provide a more balanced description of the
potential energy curve of N2 when compared with the
MMCC(2,4)/CI approach.

On the basis of our positive experience with the
QMMCC(2,5) method, which we discussed in Sect. 3.2
and which is based on the MMCC(2,5) approximation,
one might expect that the CI-corrected MMCC(2,5)
approach should provide a good description of the
RN�N > 1:75Re region of the potential-energy curve of
N2. Apparently, this is not the case. The MMCC(2,5)/CI
results are considerably better than the MMCC(2,4)/CI
results in the RN�N � 1:75Re region, but there is practi-
cally no difference in the performance of the
MMCC(2,4)/CI and MMCC(2,5)/CI approximations
for RN�N > 1:75Re. This shows that the CI-corrected
MMCC methods are less effective than the QMMCC
approaches in bringing the higher-order terms required
to improve the description of multiple bond breaking.

The failure of the MMCC(2,4)/CI and MMCC(2,5)/
CI theories at larger internuclear separations in
N2 shows that one cannot ignore the pentuply
and hextuply excited components in the wave function
jW0i and the corresponding moments Mi1i2I3I4I5

a1a2A3A4A5
ð2Þ and

Mi1i2I3I4I5I6
a1a2A3A4A5A6

ð2Þ, if we are interested in a highly accurate
description of multiple bond breaking. This behavior of
the MMCC/CI methods is in sharp contrast with the
behavior of the QMMCC approximations discussed in
the previous section, which can provide errors of a few
millihartrees in the entire RN�N ¼ 0:75Re � 2:25Re re-
gion of the N2 PES. On the other hand, once the pen-
tuply and hextuply excited components in the wave

function jW0i and the corresponding moments

Mi1i2I3I4I5
a1a2A3A4A5

ð2Þ and Mi1i2I3I4I5I6
a1a2A3A4A5A6

ð2Þ are included in the

CI-corrected MMCC calculations, the description of the

entire potential energy curve of N2 becomes extremely
good. As shown in Table 2 and Fig. 2, the MMCC(2,6)/
CI approach reduces the huge errors, on the order of
100 millihartree, in the results of the CCSD, CCSDT,
CCSD(T), CCSDðTQfÞ, and similar calculations at lar-
ger N–N distances to 4.443 millihartree at RN�N ¼ 2Re

and 4.552 millihartree at RN�N ¼ 2:25Re. The dissocia-
tion energy De, obtained by forming the difference of the
MMCC(2,6)/CI energies at R ¼ 2:25Re and R ¼ Re, is
6.68 eV, in very good agreement with the full CI De

value of 6.61 eV. The small, 1–5-millihartree, errors in
the MMCC(2,6)/CI description of the entire potentia-
lenergy curve of N2, which are obtained with the
generalized moments of the failing CCSD method,
clearly show that the MMCC theory is a robust form-
alism which can be applied to single as well as multiple
bond breaking. Although QMMCC methods are more
effective in bringing higher-order effects, required to
describe multiple bond breaking, at the lower level of
theory, when compared with the CI-corrected MMCC
approaches, the overall description of the potential en-
ergy curve of N2 by the MMCC(2,6)/CI method is better
than the description of the same curve by all QMMCC
approximations. The small unsigned errors in the
MMCC(2,6)/CI and QMMCC(2,6) results, on the order
of a few millihartrees, in the region of large N–N
separations are almost identical, but the MMCC(2,6)/CI
potential energy curve is located above the full CI curve
for all RN�N values, whereas the QMMCC(2,6) ap-
proach suffers from a minor nonvariational collapse in
the RN�N > 2Re region. This means that we can always
improve the CR-CC and QMMCC results for difficult
cases of bond breaking, where none of the simpler
MMCC methods work, by performing the CI-corrected
MMCC calculations, using the MMCC(2,6)/CI and
similar approaches.

As mentioned earlier, the CI-corrected MMCC
methods are useful in describing ground as well as ex-
cited states. Before discussing the performance of the
MMCC methods in excited-state calculations (see Sect.
4), we address another important issue: Can one im-
prove the results of the MMCC calculations in the bond
breaking region by improving the quality of the T1 and
T2 cluster components?

3.4 The MMCC methods employing the ECC theory

Until now, our discussion of the MMCC approaches has
focused on improving the results of the standard CCSD

calculations by adding one of the approximate forms of

the noniterative correction dðCCSDÞ0 , Eq. (28), to the
CCSD energy. In constructing the relevant MMCC
corrections to the CCSD energies, we used the CCSD
values of the T1 and T2 cluster components, obtained with
the symmetry-adapted RHF or ROHF references, which
are usually very poor in the bond breaking region,
particularly when multiple bond breaking is involved. As
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shown in Sects. 3.1, 3.2, and 3.3, the MMCC formalism
allows us to considerably improve the results of the
standard CC calculations, even when poor CCSD values
of the T1 and T2 cluster amplitudes are used in
constructing corrections dðCCSDÞ0 , but an interesting
question arises if we could improve the MMCC results
further or with a smaller computational effort by using
better T1 and T2 cluster amplitudes, obtained, for
example, in some nonstandard CCSD-like (but not
CCSD) calculations. The bond breaking case, which is
particularly challenging for the single-reference CC and
MMCCmethods and which should help us to address the
question, is the case of triple bond breaking in N2.

We have already demonstrated that we can obtain a
very accurate description of the potential energy curve
for N2, if we use the more expensive MMCC schemes,
such as QMMCC(2,5), QMMCC(2,6), or MMCC(2,6)/
CI. We have shown that the MMCC(2,6)/CI results,
employing the pentuply and hextuply excited moments
of the CCSD equations, are particularly impressive, al-
though we must not forget that we had to perform ad-
ditional multireference-like CI calculations to obtain
these excellent results. From the practical point of view,
one would prefer to use the lower-order MMCC ap-
proaches of the CR-CCSD(TQ),b or QMMCC(2,4)
type, since they do not require any additional non-CC
calculations to construct the relevant corrections dðCCSDÞ0
and since they only use the triply and quadruply excited
moments of the CCSD equations, thereby reducing the
costs of calculating the dðCCSDÞ0 corrections to the man-
ageable n2on5

u steps. Unfortunately, as shown in Table 2
and Fig. 2, the accuracy of the CR-CCSD(TQ),b or
QMMCC(2,4) calculations for the DZ model of N2,
which give errors on the order of 11–25 millihartree in
the RN�N > 1:75Re region, and the presence of small
humps on the CR-CCSD(TQ),b and QMMCC(2,4) po-
tential energy curves make the CR-CCSD(TQ),b and
QMMCC(2,4) methods hardly usable in quantitative
studies of triple bond dissociation.

Undoubtedly, the main problem that the MMCC
methods face, when dealing with complicated cases of
multiple bond breaking, is the very low quality of the T1

and T2 cluster amplitudes used to construct the non-
iterative MMCC corrections. The low quality of the T1

and T2 cluster components resulting from the standard
CCSD calculations can be seen by looking at the CCSD
potential energy curve shown in Fig. 2 or at the larger
portion of the CCSD potential energy curve, obtained
with the STO-3G basis set [210], shown in Fig. 7 (see
Table 3 for the corresponding numerical data). As one
can see, the collapse of the CCSD theory at larger in-
ternuclear separations, with unsigned errors in the CCSD
results exceeding 200 millihartree in the RN�N � 5:0-bohr
region, is really severe. As shown in Refs. [64, 65], the
quality of the CCSD wave function, as measured by
forming overlaps of the normalized CCSD and full CI
states at various values of RN�N, and the quality of the
corresponding T1 and T2 components dramatically dete-
riorate in the bond breaking region. In consequence, the
lower-order MMCCmethods, such as CR-CCSD(TQ),b,
eventually break down when multiple bonds are broken
(Fig. 7, Table 3; see, also, Sects. 3.1, 3.2).

We can think of several ways of improving the quality
of the T1 and T2 clusters that may help the MMCC re-
sults in complicated cases of multiple bond breaking.
For example, instead of solving the standard CCSD
equations, Eqs. (11) and (12), we could minimize the
expectation value of the Hamiltonian with the CCSD
wave function, i.e.,

EðVCCÞ0 ðT1; T2Þ ¼ hUjeT y
1
þT y

2 HeT1þT2 jUi=

hUjeT y
1
þT y

2 eT1þT2 jUi ; ð104Þ
with respect to cluster amplitudes ti1

a1 and ti1i2
a1a2 defining

T1 and T2. This would enable us to obtain the
variationally best T1 and T2 operators, which might
be better for the MMCC calculations, while eliminating
the apparently nonvariational behavior of the standard
CCSD method at larger internuclear separations of
multiply bonded systems [138, 211]. Unfortunately, it is
very difficult to propose an efficient algorithm for
calculating the energy expressions of the type of
Eq. (104), since the expectation value of the Hamilto-
nian with a CC wave function represents a nontermi-
nating series in cluster components [4]. A different
approach is called for if we wish to improve the quality
of T1 and T2 clusters for MMCC calculations at the
relatively low level of theory that uses only one- and
two-body cluster components.

We have recently demonstrated [64, 65] that one can
obtain reasonably good T1 and T2 cluster amplitudes, in
a computationally tractable fashion, which may be very
well suited for studies of multiple bond breaking, i.e.,
without resorting to the nonterminating series in cluster
components resulting from Eq. (104), by switching to

Fig. 7. Ground-state potential-energy curves of the N2 molecule,
as described by the STO-3G basis set (see the text for the remaining
details and Refs. [64, 65] for the original data)
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the ECCSD method or one of its approximate variants
based on the ECC theory [31, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154]. Similar findings have been re-
ported by Head-Gordon and coworkers [137, 138, 143,
144]. It is, therefore, interesting to examine if the low-
order MMCC corrections of the CR-CCSD(TQ),b type
can provide an accurate description of multiple bond
breaking (e.g., triple bond breaking in N2), when the
CCSD values of T1 and T2 cluster amplitudes are re-
placed by the ECCSD values. As explained in Sects. 2.1
and 3, the MMCC formalism can be generalized to a
situation where the cluster components that are used to
calculate the MMCC energy corrections are not ob-
tained by solving the standard CC equations (cf., e.g.,
Eqs. 30, 32, 51, and 54).

The detailed description of the ECC theory can be
found in Refs. [31, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154]. Additional information about the ECC
methods, including the ECCSD approaches that can be
used to study multiple bond breaking, can be found in
Refs. [64, 65, 137, 138, 143, 144]. In the following, we
restrict ourselves to the most essential information,
focusing on the basic ECCSD method. Just like the
standard CCSD theory, the ECCSD approach uses
only one and two-body cluster components. The fun-
damental difference between the standard CCSD
method or other CC approximations and the ECC
formalism is the use of two independent sets of cluster
amplitudes in the ECC calculations. Thus, in addition
to the cluster operator T , used in the standard CC
methods, we introduce the auxiliary cluster operator R.
In the ECCSD case, T is approximated by singly and
doubly excited components, T1 and T2, respectively (cf.,

e.g., Eqs. 4, 5, 6), and a similar truncation scheme is
applied to R, i.e.,

R � RðCCSDÞ ¼ R1 þ R2 ; ð105Þ
where

R1 ¼
X

i1

a1

ri1
a1E

a1
i1 ð106Þ

and

R2 ¼
X

i1<i2

a1<a2

ri1i2
a1a2E

a1a2
i1i2 ; ð107Þ

with ri1
a1 and ri1i2

a1a2 representing the corresponding
amplitudes. The T and R operators, or the amplitudes
that define them, are optimized by considering the
asymmetric, doubly connected, energy functional [31,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154]

EðECCÞ0 ðR; T Þ ¼ hUjeRye�T HeT jUi ¼ hUjeRy �He�Ry jUi

¼ hUj½eRy ðHeT ÞC �C jUi ; ð108Þ
where �H is the similarity-transformed Hamiltonian,
Eq. (18). The major advantage of the ECC energy
functional, Eq. (108), over the expectation value of the
Hamiltonian with the CC wave function (cf. Eq. (104)) is
the fact that EðECCÞ0 ðR; T Þ, Eq. (108), can be represented
by a computationally tractable finite series in T and Ry.

There can be several different ways of calculating the
T and R operators in the ECC methods. In the original

Table 3. A comparison of the CCSD, ECCSD, CR-CCSD(TQ),b,
GMMCC(2,4)/ECCSD, and GMMCC(2,4)/BECCSD ground-state
energies with the corresponding full CI results obtained for several
internuclear separations RN�N of the N2 molecule with the STO-3G

basis set [210]. The full CI total energies are in hartrees. The
remaining energies are in millihartrees relative to the corresponding
full CI energy values. The lowest two occupied orbitals were frozen
in correlated calculations

RN�N
a Full CIb CCSDb ECCSDb;c M0ð2Þ/ECCSDd CR-CCSD(TQ),be GMMCC(2,4)/

ECCSDf
GMMCC(2,4)/
BECCSDg

1.0 )101.791600 0.319 0.298 0.278 0.062 0.061 0.061
1.5 )106.720117 1.102 0.885 0.666 0.202 0.195 0.195
2.0 )107.623240 3.295 1.897 0.443 0.687 0.613 0.626
2.5 )107.651880 9.220 3.427 )2.853 2.497 1.970 1.971
3.0 )107.546614 13.176 3.758 )6.778 4.483 3.490 3.490
3.5 )107.473442 )38.645 4.476 14.930 6.168 3.126 3.074
4.0 )107.447822 )140.376 14.117 63.870 )5.820 3.356 2.141
4.5 )107.441504 )184.984 24.039 109.058 )26.557 4.870 1.190
5.0 )107.439549 )200.857 30.390 138.799 )39.221 5.543 0.190
5.5 )107.438665 )206.974 33.867 157.333 )46.162 6.164 )0.535
6.0 )107.438265 )209.538 35.746 167.731 )49.962 6.450 )0.932
7.0 )107.438054 )211.915 37.306 176.197 )53.158 6.649 )1.166
8.0 )107.438029 )213.431 37.799 178.312 )54.336 6.675 )1.117

aThe N–N separation in bohr. The equilibrium value of RN�N is 2.068 bohr
bFrom Ref. [64]
cBased on the ECCSD formalism of Ref. [31]
d The zero-body moment or the CCSD-like energy expression, Eq. (31), calculated using the ECCSD rather than CCSD values of T1 and T2,
obtained with the ECCSD theory of Ref. [31]
eEquivalent to the GMMCC(2,4) energy, Eq. (54), calculated with the CCSD values of T1 and T2 and jW0i defined by Eq. (59)
fThe GMMCC(2,4) energy, Eq. (54), calculated with the ECCSD values of T1 and T2 and jW0i defined by Eq. (59). The T1 and T2 clusters
were obtained with the ECCSD theory of Ref. [31]
gThe GMMCC(2,4) energy, Eq. (54), calculated with the BECCSD values of T1 and T2 and jW0i defined by Eq. (59). The T1 and T2 clusters
were obtained with the bilinear approximation to the ECCSD theory of Ref. [31], termed BECCSD, introduced in Ref. [64] (cf. Eq. (113))
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formulation of the ECC theory by Arponen, Bishop and
coworkers [145, 146, 147, 148, 149, 150, 151, 152, 153,
154], the T and R operators are determined by requiring
that EðECCÞ0 ðR; T Þ is stationary with respect to T and Ry.
In an alternative formulation by Piecuch and Bartlett
[31], the operators T and R are determined by con-
sidering the doubly transformed form of the electronic
Schrödinger equation for the CC wave function, Eq. (3),
i.e.,

H
¼
jUi ¼ E0jUi ; ð109Þ

where

H
¼
¼eRy ðe�T HeT Þe�Ry ¼ eRy �He�Ry

¼½eRy ðHeT ÞC�C ; ð110Þ

and the left-hand analog of Eq. (109), i.e.,

h~UjH
¼
¼ E0h~Uj ; ð111Þ

in which we require that the left-hand state h~Uj is
identical to the right-hand reference state jUi. Both ECC
approaches lead to nonlinear systems of equations for
the cluster amplitudes defining T and R (ti1

a1 and ti1i2
a1a2 for

T and ri1
a1 and ri1i2

a1a2 for R in the ECCSD case). We refer
the reader to the original papers [31, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154] and recent work [64, 65,
137, 138, 143, 144] for further details.

Although there are differences between the forms of
the amplitude equations used to determine the cluster
operators T and R in the ECC theories of Arponen,
Bishop and coworkers [145, 146, 147, 148, 149, 150,
151, 152, 153, 154] and Piecuch and Bartlett [31], our
experiences to date indicate that these differences are
not essential in the context of improving the results in
the bond breaking region. For example, the bi-sta-
tionary character of the ECC theory of Arponen,
Bishop and coworkers, which is no longer preserved in
the ECC theory of Piecuch and Bartlett and which is
convenient in the calculations of energy derivatives and
molecular properties [212, 213, 214, 215, 216, 217, 218,
219, 220], is of lesser significance in studies of bond
breaking. As shown in Refs. [64, 65], the most impor-
tant factor that contributes to significant improvements
in the quality of the T1 and T2 cluster components in
the bond breaking region is the flexibility of the ECC
theories, which rely on two independent sets of cluster
amplitudes. The standard CC theory, based on Eqs. (9)
and (14), uses only one set of cluster amplitudes and
this is not sufficient to obtain a correct description of
multiple bond breaking by the standard CCSD method.
Another feature of all ECC methods, which is partic-
ularly useful in the context of bond breaking, is the fact
that in analogy to the so-called expectation value CC
approaches [31, 221, 222], the ECC methods are
capable of describing various higher-order effects,
including the effect of T4 clusters, even at the basic
ECCD or ECCSD levels of theory. Those effects are
brought into the ECC formalism as products of the
low-order many-body components of Ry and T and
their powers. For example, an important part of the

fifth-order effect due to T4 clusters, usually referred to
as the E½5�QQ energy contribution [223, 224, 225], appears
in the ECC theory in the form of the
1
4hUjðR

y
2Þ

2ðVNT 2
2 ÞCjUi term, where R2 is a two-body

component of R (see Refs. [31, 64, 65] for further de-
tails and analysis). This term is present in the ECC
energy, Eq. (108), even at the lowest ECCD level, in
which T ¼ T2 and R ¼ R2. As demonstrated in Ref.
[64], this useful feature of the ECC formalism helps the
description of bond breaking by the ECC theories,
since the effects of high-order cluster components, such
as T4, are very important at larger internuclear sepa-
rations.

The usefulness of the ECCSD theory in improving
the results for multiple bond breaking becomes apparent
when we examine the results shown in Table 3 and
Fig. 7. As one can see, the ECCSD method, based on the
ECC theory of Piecuch and Bartlett [31], employing the
ground-state RHF orbitals, provides remarkable
improvements in the very poor description of the po-
tential energy curve of N2 by the standard CCSD
method. The huge negative errors in the CCSD results at
larger N–N separations of about �200 millihartree re-
duce to much smaller positive errors, on the order of 30–
38 millihartree, in the ECCSD case. Very similar findings
were reported in Refs. [137, 138, 143, 144], where the
authors used the ECCD method of Arponen, Bishop
and coworkers [145, 146, 147, 148, 149, 150, 151, 152,
153, 154] and the full CI Brueckner orbitals. As shown in
Fig. 7, the ECCSD approach eliminates the pathological
behavior of the CCSD method at larger N–N distances,
restoring the variational description of the potential-
energy curve of N2 at all internuclear separations. As
demonstrated in Refs. [64, 65], the quality of the ECCSD
wave function eT1þT2 jUi, where T1 and T2 are obtained in
the ECCSD calculations, and of the corresponding T1

and T2 cluster components, as measured by forming
overlaps of the normalized ECCSD and full CI states at
various internuclear separations in N2, only slightly
deteriorates with the increasing RN�N values.

Although the ECCSD approach does not provide a
perfect description of bond breaking in N2, the ECCSD
results are so much better than their CCSD analogs that
it is worthwhile to examine the effect of replacing the
CCSD values of the T1 and T2 cluster components in the
MMCC calculations by the ECCSD values of these
clusters. Since the ECCSD method is no longer a stan-
dard CC theory, so we can no longer assume that the
singly and doubly excited moments, Mi1

a1ð2Þ and
Mi1i2

a1a2ð2Þ, Eqs. (33) and (34), respectively, vanish, we
must use the GMMCC formalism, discussed in Sect. 2.1
and represented by Eqs. (30) and (32), to determine the
final ground-state energies. In the ECCSD case that
interests us here, we must use Eq. (32) (rather than the
usual MMCC expression, Eq. 28). Thus, we first use the
ECCSD values of the T1 and T2 clusters to calculate the
zero-body moment M0ð2Þ, Eq. (31) (a CCSD-like energy
expression, in which the CCSD values of T1 and T2 are
replaced by their ECCSD counterparts), and then add
various terms expressed in terms of all or some moments
Mi1...ik

a1...ak
ð2Þ, k ¼ 1� 6, Eqs. (33), (34), (24), (25), (26) and

(27), respectively, calculated with the ECCSD values of
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T1 and T2, to correct the M0ð2Þ energy. In practice, we are
interested in a truncated form of Eq. (32) that leads to
relatively low costs of calculating the energy. Our tests
indicate that the lowest-order GMMCC scheme, based
on using Eq. (32) and the ECCSD values of T1 and T2,
which provides excellent results for multiple bond
breaking, is the GMMCC(2,4) approach defined by
Eq. (54). In this approach, referred to as the
GMMCC(2,4)/ECCSD method, we only consider the
generalized moments Mi1...ik

a1...ak
ð2Þ with k ¼ 1� 4, i.e.

moments corresponding to projections on singly, dou-
bly, triply, and quadruply excited configurations. As in
other approximate MMCC calculations, we had to de-
cide what to do with the wave function jW0i that enters
the GMMCC(2,4)/ECCSD energy formula, Eq. (54).
Since we are mainly interested in the black-box MMCC
approaches of the CR-CC type, in this preliminary study
of the performance of the GMMCC(2,4)/ECCSD the-
ory, we utilized exactly the same wave function jW0i in
Eq. (54) as previously used in defining the CR-
CCSD(TQ),b approach (the jWCCSDðTQÞ;b

0 i wave func-
tion, Eq. 59, where the required T1 and T2 clusters are
taken from the ECCSD calculations). The
GMMCC(2,4)/ECCSD theory discussed in this section
reduces to the CR-CCSD(TQ),b approach described in
Sect. 3.1 if the T1 and T2 clusters originating from the
ECCSD calculations are replaced in Eq. (54) by their
CCSD analogs. This straightforward relationship be-
tween the GMMCC(2,4)/ECCSD and CR-CCSD(TQ),b
methods immediately implies that once the T1 and T2

clusters are determined by solving the ECCSD equa-
tions, the computer cost of calculating the
GMMCC(2,4)/ECCSD energy is the same as the com-
puter cost of the CR-CCSD(TQ),b calculations, which
scale as n2

on5u with the numbers of occupied and unoc-
cupied orbitals in a basis set.

The GMMCC(2,4)/ECCSD results for the STO-3G
model of N2 are shown in Fig. 7 and Table 3. As one
can see, the GMMCC(2,4)/ECCSD method provides
spectacular improvements in the description of triple
bond breaking in N2 reducing huge unsigned errors in
the CCSD and CR-CCSD(TQ),b results in the
RN�N � 5:0-bohr region, on the order of 200–210 and
40–50 millihartree, respectively, and the 30–38-milli-
hartree errors in the ECCSD results to as little as 6–7
millihartree. The errors in the GMMCC(2,4)/ECCSD
results in the entire RN�N � 4:0-bohr (approx 2Re) re-
gion do not exceed 3 millihartree, being much smaller
in the RN�N � Re region. As shown in Fig. 7 and Table
3, the GMMCC(2,4)/ECCSD potential energy curve is
located only slightly above the full CI curve and there
is no hump on it. Interestingly enough, the zero-body
moment M0ð2Þ, Eq. (31), calculated with the ECCSD
values of T1 and T2, which is corrected in the
GMMCC(2,4) energy formula, Eq. (54), by adding
terms expressed in terms of singly, doubly, triply, and
quadruply excited moments Mi1...ik

a1...ak
ð2Þ with k ¼ 1� 4,

is a poor approximation to the exact, full CI, energy in
the region of large N–N separations (Table 3). This
shows once again the remarkable ability of the MMCC
formalism to restore high accuracies in the bond
breaking region even when the CC energy that we are

trying to correct (in this case, the M0ð2Þ=ECCSD en-
ergy) is itself very poor.

We have already mentioned that the most expensive
steps of the GMMCC(2,4)/ECCSD energy calculations
scale as n2

on5u. There is, however, an additional cost
associated with the underlying ECCSD calculations.
Independent of the formulation of the ECC theory
(that of Arponen, Bishop and coworkers or that of
Piecuch and Bartlett), the ECCSD calculations are
considerably more expensive than the standard CCSD
calculations. The ECCSD method uses only singly and
doubly excited cluster components, but they are used in
a rather complicated fashion. This is a problem that
must be properly addressed before the GMMCC(2,4)/
ECCSD method becomes practical. So far, we have
tried to address this issue by considering various
approximate ECCSD algorithms, which scale as N6

with the system size. These include the quadratic and
bilinear ECCSD methods (QECCSD and BECCSD,
respectively), described in Refs. [64, 65]. Similar meth-
ods were considered by Head-Gordon and coworkers
(the so-called QCCD approach [138, 143]) and Pal,
Vaval and coworkers [216, 217, 218, 219, 220] (the
quadratic and cubic ECCSD schemes). For example, in
the BECCSD method, we replace the doubly trans-
formed Hamiltonian

H
¼ ðECCSDÞ ¼ eRy

1
þRy

2ðe�T1�T2HeT1þT2Þe�Ry
1
�Ry

2

¼ eðR
ðCCSDÞÞy �H ðCCSDÞe�ðR

ðCCSDÞÞy ð112Þ
of the full ECCSD theory, where �H ðCCSDÞ and RðCCSDÞ

are defined by Eqs. (13) and (105), respectively, by its
simplified form in which we only retain terms that are
linear and bilinear in RðCCSDÞ, i.e.,

H
¼ ðBECCSDÞ ¼ ½1þ ðRðCCSDÞÞy� �H ðCCSDÞ½1� ðRðCCSDÞÞy�

þ 1

2
½ðRðCCSDÞÞy�2 �H ðCCSDÞ

þ 1

2
�H ðCCSDÞ½ðRðCCSDÞÞy�2 : ð113Þ

The QECCSD equations are similar to the BECCSD
equations [64, 65]. As shown in Table 3, the
GMMCC(2,4) calculations employing the BECCSD
values of T1 and T2 lead to an excellent description of
triple bond breaking in N2. Although it is quite likely
that this is a fortuitous cancellation of errors, the results
of the GMMCC(2,4)/BECCSD calculations are even
better than their GMMCC(2,4)/ECCSD analogs. There
is a tiny hump on the GMMCC(2,4)/BECCSD potential
energy curve for N2, but the 0–3-millihartree errors in
the GMMCC(2,4)/BECCSD results in the entire
RN�N ¼ 1:0� 8:0-bohr region are better than other
MMCC results for N2 discussed in this article. The tiny
hump on the GMMCC(2,4)/BECCSD potential energy
curve can be eliminated if we use the QECCSD
approximation [64, 65] instead of the BECCSD method
to generate T1 and T2. The GMMCC(2,4) results
employing the QECCSD values of the T1 and T2 clusters
are virtually identical to the GMMCC(2,4)/ECCSD
results shown in Table 3.

378



The detailed study of the performance of the
GMMCC(2,4) method, employing various ECCSD
approximations to generate the T1 and T2 cluster com-
ponents and the ECC theories of Arponen, Bishop and
coworkers and Piecuch and Bartlett, will be described
elsewhere. The preliminary results discussed in this sec-
tion are very encouraging, since the calculation of the
GMMCC(2,4) energy is as easy as the calculations of the
CR-CCSD(TQ),b or QMMCC(2,4) energies [and these
have the same cost as the standard CCSDðTQfÞ method]
and, at the same time, the ECCSD-based GMMCC(2,4)
approach removes the failing of the related CCSD-based
CR-CCSD(TQ),b and QMMCC(2,4) methods (and
other single-reference CC approximations) in a very
complicated case of triple bond breaking in N2. The
excellent performance of the relatively inexpensive
GMMCC(2,4) approach in describing the large nondy-
namic correlation effects characterizing N2 clearly dem-
onstrates that the MMCC theory is a very flexible
formalism, in which we can continue improving the
accuracy in the bond breaking region without substan-
tially increasing the computer costs. This is a conse-
quence of a good understanding of the nature and many-
body structure of the remanent errors that occur in the
standard CC calculations offered by the fundamental
MMCC and GMMCC formulas, Eqs. (21) and (30).

4 Approximate MMCC approaches to excited states

As explained in Sect. 2.2, the MMCC formalism can be
extended to excited states. In this case, the noniterative
corrections dðAÞK , Eq. (39), expressed in terms of the
generalized moments of the EOMCC equations, Eq. (41)
or (42), are added, in a state-selective manner, to the
excited-state energies EðAÞK obtained in the standard
EOMCC calculations. If the excited-state energies that
we want to correct are obtained in the EOMCCSD
calculations, we use Eq. (47) and the generalized
moments of the EOMCCSD equations, Eq. (44), such

as Mi1i2i3
K;a1a2a3ð2Þ, Eq. (46), to calculate the relevant

corrections dðEOMCCSDÞ
K .

As in the ground-state case, the exact excited-state

corrections dðAÞK or dðEOMCCSDÞ
K , which recover the exact,

full CI, energies, are also expressed in terms of the full
CI wave functions jWKi (cf. Eqs. 39 and 47). Thus, in
order to develop practical computational schemes, based
on Eq. (39) or (47), we must rely on some approximate

forms of wave functions jWKi in constructing the non-

iterative corrections dðAÞK or dðEOMCCSDÞ
K . Essentially all

approximate MMCC methods for excited states pro-
posed to date are based on employing the wave functions
jWKi that are either designed using the MBPT-like
arguments [12, 74] or obtained in inexpensive limited CI
calculations [12, 72, 73]. Typically, the CI expansions of
the wave functions jWKi used in the MMCC calculations
for excited states are relatively short and do not contain
higher–than–mB-tuply excited components relative to
the reference configuration jUi, where the excitation le-
vel mB is not much higher than the excitation level mA

defining the EOMCC approximation that we are trying
to improve. The condition that the wave functions jWKi
used in Eq. (39) or Eq. (47) do not contain higher–than–
mB-tuply excited components relative to jUi defines the
excited-state analogs of the ground-state
MMCC(mA;mB) schemes, in which the energies are
calculated as follows [12, 72, 73, 74]:

EðMMCCÞ
K ðmA;mBÞ ¼ EðAÞK þ dKðmA;mBÞ; ð114Þ

where EðAÞK is the energy of the Kth electronic state,
obtained with some standard EOMCC method A, and

dKðmA;mBÞ ¼
XmB

n¼mAþ1

Xn

k¼mAþ1
hWK jCn�kðmAÞ

�MK;kðmAÞjUi=hWK jRðAÞK eT ðAÞ jUi
ð115Þ

is the relevant MMCC correction to EðAÞK . In analogy to
the ground-state MMCC(mA;mB) calculations, the gen-
eralized moments of the EOMCC equations,
Mi1...ik

K;a1...ak
ðmAÞ, Eqs. (41) and (42), enter Eqs. (114) and

(115) through quantities MK;kðmAÞjUi, Eq. (40), and
Cn�kðmAÞ are the many-body components of eT ðAÞ ,
defined by Eq. (22), where T ðAÞ is the cluster operator

defining (along with the excitation operator RðAÞK ) the
EOMCC calculations A, whose results we want to
correct.

As in the case of the ground-state methods discussed
in Sect. 3, we limit our discussion of the MMCC
methods for excited states to the low-order
MMCC(mA;mB) schemes with mA ¼ 2, which can be
used to correct the results of the EOMCCSD calcula-
tions. In this category, two schemes are particularly
useful, namely, MMCC(2,3) and MMCC(2,4), al-
though, in analogy to the ground-state methods, we
can always contemplate higher-order MMCC(2,5) and
MMCC(2,6) approaches. The MMCC(2,3) and
MMCC(2,4) energy expressions for the excited-state
energies EK , which one can easily obtain by setting
mA ¼ 2 and mB ¼ 3 or 4 in Eqs. (114) and (115), are as
follows [12, 61, 72, 73, 74]:

EðMMCCÞ
K ð2; 3Þ ¼ EðEOMCCSDÞ

K þ hWK jMK;3ð2ÞjUi=
hWK jRðCCSDÞK eT1þT2 jUi ð116Þ

and

EðMMCCÞ
K ð2; 4Þ ¼ EðEOMCCSDÞ

K þ hWK jfMK;3ð2Þ
þ ½MK;4ð2Þ þ T1MK;3ð2Þ�gjUi=

hWK jRðCCSDÞK eT1þT2 jUi; ð117Þ
where EðEOMCCSDÞ

K is the EOMCCSD energy for the Kth
electronic state, RðCCSDÞK is the corresponding excitation
operator (cf. Eq. 45), T1 and T2 are the singly and doubly
excited clusters obtained in the CCSD calculations, and
MK;3ð2ÞjUi and MK;4ð2ÞjUi are the quantities that are
expressed in terms of the triply and quadruply excited
moments of the EOMCCSD equations, Mi1i2i3

K;a1a2a3ð2Þ and
Mi1i2i3i4

K;a1a2a3a4ð2Þ, respectively, using Eq. (48), where k ¼ 3
and 4. As in the ground-state case, these moments are
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easy to calculate. For example, as implied by Eq. (46),
the triexcited moments Mi1i2i3

K;a1a2a3ð2Þ are expressed in
terms of the triples–reference, triples–singles, and tri-
ples–doubles blocks of the matrix representing the
EOMCCSD similarity transformed Hamiltonian
�HCCSD, Eq. (13). An analogous expression for the
quadruply excited moments Mi1i2i3i4

K;a1a2a3a4ð2Þ, based on
Eq. (42), implies that the only blocks of the matrix
representing �HCCSD that are involved in computing
moments Mi1i2i3i4

K;a1a2a3a4ð2Þ are the quadruples–reference,
quadruples–singles, and quadruples–doubles blocks [73].
The expensive triples–triples, triples–quadruples, qua-
druples–triples, and quadruples–quadruples blocks do
not enter the expressions for Mi1i2i3

K;a1a2a3ð2Þ and
Mi1i2i3i4

K;a1a2a3a4ð2Þ. In consequence, the most expensive steps
of the excited-state calculations using the MMCC(2,3)
and MMCC(2,4) methods are essentially identical to the
n3on4

u and n2
on5

u noniterative steps of the ground-state
CCSD(T) and CCSD(TQf) calculations, respectively.
Similar remarks apply to the memory and disk-space
requirements. Clearly, those are great simplifications in
the computer effort, compared with the higher-level
EOMCC approaches, such as EOMCCSDT [70, 71,
121], particularly if we realize that we only have to use
the T1 and T2 clusters, obtained in the CCSD calcula-
tions, to construct matrix elements of �H ðCCSDÞ that enter
Mi1i2i3

K;a1a2a3ð2Þ and Mi1i2i3i4
K;a1a2a3a4ð2Þ. In practical implemen-

tations of the MMCC(2,3), MMCC(2,4), and related
CR-EOMCCSD(T) approaches, we do not construct
matrix elements of �H ðCCSDÞ to calculate Mi1i2i3

K;a1a2a3ð2Þ and
Mi1i2i3i4

K;a1a2a3a4ð2Þ; we rather evaluate Mi1i2i3
K;a1a2a3ð2Þ and

Mi1i2i3i4
K;a1a2a3a4ð2Þ using the recursively generated intermedi-

ates [226]. Another nice feature of the MMCC(2,3) and
MMCC(2,4) approximations for excited states [which
applies to all excited-state MMCC(mA;mB) schemes] is
the fact that Eqs. (116) and (117) reduce to the ground-
state MMCC(2,3) and MMCC(2,4) methods defined by
Eqs. (52) and (53), respectively, when K ¼ 0 (cf.
Sect. 2.2), offering us the possibility of obtaining a
balanced description of ground and excited states in a
single formalism.

Depending on the form of the wave function jWKi in
Eqs. (116) and (117), we distinguish between the per-
turbative MMCC approaches for excited states, such as
CR-EOMCCSD(T) [12, 74], which might be viewed as
the excited-state extensions of the ground-state CR-
CCSD(T) method discussed in Sect. 3.1, and the CI-
corrected MMCC approaches [12, 72, 73], which repre-
sent a natural extension of the idea of the ground-state
MMCC/CI method overviewed in Sect. 3.3. A few
examples of the performance of these two classes of the
excited-state MMCC methods are examined in Sects. 4.1
and 4.2.

4.1 The CR-EOMCCSD(T) methods

The ground-state CR-CCSD[T] and CR-CCSD(T)
approaches, described in Sect. 3.1, are obtained by
replacing the wave function jW0i in the MMCC(2,3)
energy formula, Eq. (52), with the perturbative expres-

sions, Eqs. (55) and (56), which contain the lowest-order
information about triply excited clusters. Similar expres-
sions can be proposed for excited states, if we perform
the perturbative analysis of the EOMCCSDT or CISDT
eigenvalue problems [74]. By replacing the wave func-
tions jWKi that enter the excited-state MMCC(2,3)
formula, Eq. (116), with the expressions that result from
analyzing the EOMCCSDT or CISDT equations, we
obtain the noniterative approximations for excited
states, termed the CR-EOMCCSD(T) methods. Several
CR-EOMCCSD(T) schemes, which can be regarded
as the renormalized extensions of the existing EOM-
CCSD(T) [37], EOMCCSD(~T) [38], EOMCCSD(T0)
[38], and CCSDR(3) [42, 43] approaches, have recently
been developed [12, 74] and tested [12, 74, 227]. They are
all obtained by replacing the wave functions jWKi in the
excited-state MMCC(2,3) formula, Eq. (116), by the
perturbative expressions of one of the following three
types [74]:

jWI
Ki ¼ ðP þ Q1 þ Q2 þ Q3ÞðRK;0 þ RK;1 þ RK;2

þ ~RK;3ÞeT1þT2 jUi

¼ fRK;0 þ ðRK;1 þ RK;0T1Þ þ ½RK;2 þ RK;1T1

þ RK;0ðT2 þ
1

2
T 2
1 Þ� þ ½~RK;3 þ RK;2T1

þ RK;1ðT2 þ
1

2
T 2
1 Þ

þ RK;0ðT1T2 þ
1

6
T 3
1 Þ�gjUi; ð118Þ

jWII
K i ¼ ðP þ Q1 þ Q2ÞðRK;0 þ RK;1 þ RK;2ÞeT1þT2 jUi

þ ~RK;3jUi

¼ fRK;0 þ ðRK;1 þ RK;0T1Þ þ ½RK;2 þ RK;1T1

þ RK;0ðT2 þ
1

2
T 2
1 Þ� þ ~RK;3gjUi; ð119Þ

or

jWIII
K i ¼ ðCK;0 þ CK;1 þ CK;2 þ ~CK;3ÞjUi; ð120Þ

where T1 and T2 are the singly and doubly excited
clusters obtained in the CCSD calculations, RK;0, RK;1,
and RK;2 are the reference, singly excited, and doubly
excited components of the EOMCCSD excitation oper-
ator RðCCSDÞK , and CK;0jUi, CK;1jUi, and CK;2jUi are the
reference, singly excited, and doubly excited components
of the CI singles and doubles (CISD) wave function for
the Kth electronic state. The operator P ¼ jUihUj is the
projection operator onto the one-dimensional manifold
spanned by the reference jUi and
Qk ¼

P
i1<���<ik
a1<���<ak

jUa1...ak
i1...ik ihU

a1...ak
i1...ik j is the projection operator

onto the subspace of all k-tuply excited configurations
relative to jUi. The triply excited components of the
EOMCC excitation operator RK , which enter the wave
functions jWI

Ki and jWII
K i, Eqs. (118) and (119), respec-

tively, and which can be determined through perturbat-
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ive analysis of the EOMCCSDT equations, are defined
as follows [74]:

~RK;3 ¼
X

i1<i2<i3
a1<a2<a3

~Ri1i2i3
K;a1a2a3E

a1a2a3
i1i2i3 ; ð121Þ

where

~Ri1i2i3
K;a1a2a3 ¼Mi1i2i3

K;a1a2a3ð2Þ=Di1i2i3
K;a1a2a3 ; ð122Þ

with moments Mi1i2i3
K;a1a2a3ð2Þ given by Eq. (46) and the

perturbative denominator Di1i2i3
K;a1a2a3 given by

Di1i2i3
K;a1a2a3 ¼ EðEOMCCSDÞ

K � hUa1a2a3
i1i2i3 j �H

ðCCSDÞjUa1a2a3
i1i2i3 i

¼ xðEOMCCSDÞ
K � hUa1a2a3

i1i2i3 j �H
ðCCSDÞ
open jUa1a2a3

i1i2i3 i

¼ xðEOMCCSDÞ
K � hUa1a2a3

i1i2i3 j �H
ðCCSDÞ
1 jUa1a2a3

i1i2i3 i

� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
2 jUa1a2a3

i1i2i3 i

� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
3 jUa1a2a3

i1i2i3 i: ð123Þ
Here, xðEOMCCSDÞ

K represents the EOMCCSD excitation
energy,

xðEOMCCSDÞ
K ¼ EðEOMCCSDÞ

K � EðCCSDÞ0 ; ð124Þ
�H ðCCSDÞopen is the open part of �H ðCCSDÞ (all diagrams of
�H ðCCSDÞ that have external lines), and �H ðCCSDÞk is a k-
body component of �H ðCCSDÞ. The triply excited compo-

nents of the CI-like wave function jWIII
K i, Eq. (120),

which are estimated using the singly and doubly excited
components of jWIII

K i obtained in the single-reference
CISD calculations (i.e. the CK;1jUi and CK;2jUi terms),
are defined as follows [74]:

~CK;3jUi ¼
X

i1<i2<i3
a1<a2<a3

~Ci1i2i3
K;a1a2a3 jU

a1a2a3
i1i2i3 i; ð125Þ

where

~Ci1i2i3
K;a1a2a3 ¼hU

a1a2a3
i1i2i3 jHðCK;1 þ CK;2ÞjUi=

Di1i2i3
K;a1a2a3 ; ð126Þ

with the denominator Di1i2i3
K;a1a2a3 given by

Di1i2i3
K;a1a2a3 ¼ EðEOMCCSDÞ

K � hUa1a2a3
i1i2i3 jH jU

a1a2a3
i1i2i3 i: ð127Þ

These expressions apply to the ground and excited
states. For the wave function jWIII

K i, Eq. (120), we simply
use the ground-state CISD solution to construct the
K ¼ 0 form of jWIII

K i. In the case of wave functions jWI
Ki

and jWII
K i, Eqs. (118) and (119), respectively, we obtain

the ground-state (K ¼ 0) formulas by replacing RK;0 by
1, RK;1 and RK;2 by 0, and ~RK;3 by

~R0;3 ¼
X

i1<i2<i3
a1<a2<a3

~Ri1i2i3
0;a1a2a3

Ea1a2a3
i1i2i3 ; ð128Þ

where

~Ri1i2i3
0;a1a2a3

¼Mi1i2i3
a1a2a3ð2Þ=Di1i2i3

0;a1a2a3
; ð129Þ

with moments Mi1i2i3
a1a2a3ð2Þ given by Eq. (24) and the

denominator Di1i2i3
0;a1a2a3

given by

Di1i2i3
0;a1a2a3

¼� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
1 jUa1a2a3

i1i2i3 i

� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
2 jUa1a2a3

i1i2i3 i

� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
3 jUa1a2a3

i1i2i3 i: ð130Þ
The three types of wave functions jWKi, Eqs. (118),

(119), (120), that are used to replace jWKi in the excited-
state MMCC(2,3) formula, Eq. (116), lead to three dif-
ferent classes of the CR-EOMCCSD(T) approximations,
referred to as the CR-EOMCCSD(T),I, CR-EO-
MCCSD(T),II, and CR-EOMCCSD(T),III methods
[74]. Additional variants of the CR-EOMCCSD(T),I
and CR-EOMCCSD(T),II approaches are obtained by
simplifying the formulas for the perturbative denomi-
nators Di1i2i3

K;a1a2a3 , Eq. (123), defining the triexcited com-

ponents ~Ri1i2i3
K;a1a2a3 , Eq. (122). We can, for example, ignore

the last two terms involving two- and three-body com-
ponents of �H ðCCSDÞ and replace the complete many-body
expansion for Di1i2i3

K;a1a2a3 , Eq. (123), by

~Di1i2i3
K;a1a2a3 ¼ xðEOMCCSDÞ

K

� hUa1a2a3
i1i2i3 j �H

ðCCSDÞ
1 jUa1a2a3

i1i2i3 i: ð131Þ
We can go even further and replace ~Di1i2i3

K;a1a2a3 , Eq. (131), by
the usual MBPT-like denominators
xðEOMCCSDÞ

K þ �i1 þ �i2 þ �i3 � �a1 � �a2 � �a3 , where �’s
are the Hartree–Fock orbital energies. If we do this, we
obtain the CR-EOMCCSD(T) method, which becomes
virtually identical to theCR-CCSD(T) andQMMCC(2,3)
ground-state approaches when K ¼ 0. All these different
variants of the CR-EOMCCSD(T) approach have been
carefully analyzed and tested inRef. [74]. In this article,we
focus on themixedCR-EOMCCSD(T),I approach, based
on the wave function jWI

Ki, Eq. (118), in which we use the
full perturbative denominator Di1i2i3

K;a1a2a3 , Eq. (123), to
calculate the excited-state energies (the K > 0 case) and
the simplified form of this denominator, Eq. (131), to
calculate the ground-state (K ¼ 0) energies. A few results
of the CR-EOMCCSD(T),III calculations, based in
Eq. (120), are shown too. Our experience to date indicates
that mixed CR-EOMCCSD(T) approaches and the CR-
EOMCCSD(T),III approach provide the best overall
results for ground- and excited-state PESs along bond
breaking coordinates and the very good balance between
ground- and excited-state energies in calculations of
excitation energies corresponding to two-electron transi-
tions. We refer the reader to the original work [74] for
further details.

Before discussing a few examples illustrating the
performance of the CR-EOMCCSD(T) approach, we
would like to compare the CR-EOMCCSD(T) methods
discussed in this section and the noniterative triples
EOMCC or response CC approaches developed by
Bartlett’s and Jørgensen’s groups [37, 38, 42, 43]. There
are two fundamental differences between the CR-
EOMCCSD(T) methods that originate from the MMCC
theory and the previously proposed EOMCCSD(T) [37],
EOMCCSD(~T) [38], EOMCCSD(T0) [38], and
CCSDR(3) [42, 43] approaches that originate from the
standard (sometimes quite complicated) MBPT analysis
of the EOMCC or response CC equations. First of all,
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the CR-EOMCCSD(T) methods allow us to describe the
entire excited-state PESs or, at least, their large frag-
ments, whereas the applicability of the EOMCCSD(T),
EOMCCSD(~T), EOMCCSD(T0), and CCSDR(3) ap-
proaches is usually limited to vertical excitation energies
at or near the ground-state equilibrium geometry. The
standard noniterative methods of the EOMCCSD(T) or
CCSDR(3) type and their iterative extensions, such as
EOMCCSDT-n [37, 38] and CC3 [40, 41, 42, 43], have
problems with providing a balanced description of ex-
cited states having large contributions due to doubly
excited configurations, particularly if the ground state
has a quasidegenerate character. Second, the EO-
MCCSD(T), EOMCCSD(~T), EOMCCSD(T0), and
CCSDR(3) methods are based on the idea of adding

noniterative corrections to the EOMCCSD excitation

energies xðEOMCCSDÞ
K , not to the individual energies of

the electronic states of interest. As all other MMCC
approaches, the CR-EOMCCSD(T) methods provide us
with a well-defined and systematic procedure of cor-
recting the EOMCCSD energies of individual electronic
states in a state selective fashion, which is very important
for the applications involving the calculations of
molecular PESs. At the same time, the CR-EOM-
CCSD(T) approaches, which will soon be available in

the GAMESS package [226], are characterized by the rel-
atively low computer costs and ease of use of the stan-
dard ground-state CCSD(T) method.

A few examples of applications of the CR-EO-
MCCSD(T) methods to excited-state PESs of CHþ

and HF, vertical excitation energies of C2, and adia-
batic excitation energies of ozone, taken from Refs.
[74, 227], are shown in Tables 4, 5 and 6 and Fig. 8.
For CHþ, we used the [5s3p1d/3s1p] basis set of Olsen
et al. [228], for which the exact, full CI, results at the
equilibrium geometry, RC�H ¼ Re ¼ 2:13713 bohr, and
several stretched geometries can be found in Refs. [75,
228]. For HF, we used the DZ basis set [164], for
which we could perform the full CI calculations our-
selves. For the C2 molecule, we used the modified aug-
cc-pVDZ basis set [165, 181] described by Christiansen
et al. [43], since these authors used this basis set to
perform the full CI calculations for the low-lying ex-
cited states of C2. Finally, for ozone, we used the
polarized basis set of Sadlej [229], which is often used
in calculations of excited states. Additional calcula-
tions for ozone, employing Sadlej’s and other larger
basis sets, and including the calculations for several
electronic states of each symmetry, can be found in
Ref. [227].

Table 4. A comparison of the CR-EOMCCSD(T), MMCC(2,3)/
CI, and MMCC(2,4)/CI vertical excitation energies of the CHþ ion,
as described by the [5s3p1d/3s1p] basis set of Olsen et al. [228], at
the equilibrium geometry RC�H ¼ Re and two stretched geometries,
RC�H ¼ 1:5Re and RC�H ¼ 2Re, with the exact, full CI, data and

other CC results. The full CI values are the excitation energies. All
other values are the deviations from the full CI results. The n 1X
energy is the vertical excitation energy from the ground state
(1 1Rþ) to the nth singlet state of symmetry X . All energies are in
electronvolts

State Full CIa EOMCCSDb CC3c EOMCCSDtb;d EOMCCSDTb MMCC(2,3)/CId;e MMCC(2,4)/CId;e CR-EOMCCSD(T)f

RC�H ¼ Re
g

2 1Rþ 8.549 0.560 0.230 0.092 0.074 0.084 0.023 0.105
3 1Rþ 13.525 0.055 0.016 0.000 0.001 0.000 )0.001 )0.001
4 1Rþ 17.217 0.099 0.026 0.012 )0.002 0.015 0.008 0.014
1 1P 3.230 0.031 0.012 0.003 )0.003 0.007 0.010 )0.005
2 1P 14.127 0.327 0.219 0.094 0.060 0.105 0.037 0.101
1 1D 6.964 0.924 0.318 0.057 0.040 0.051 0.031 0.016
2 1D 16.833 0.856 0.261 0.016 )0.038 0.006 0.061 )0.014
RC�H ¼ 1:5Re

2 1Rþ 6.954 0.668 0.064 0.055 0.072 0.020 0.087
3 1Rþ 9.344 0.124 0.025 0.023 0.005 0.004 )0.007
4 1Rþ 13.988 0.256 0.057 0.037 0.025 )0.046 0.134
1 1P 1.718 0.109 0.003 0.001 0.024 0.018 0.013
2 1P 8.202 0.564 0.067 0.059 0.059 )0.006 0.046
1 1D 5.847 1.114 0.076 0.069 0.065 0.025 )0.015
2 1D 13.949 2.095 0.038 0.017 )0.086 0.034 0.473
RC�H ¼ 2Re

2 1Rþ 5.353 0.299 )0.024 )0.032 0.074 0.013 0.059
3 1Rþ 6.681 0.532 0.135 0.126 0.048 0.016 0.050
4 1Rþ 11.005 0.771 0.021 0.019 )0.046 )0.001 0.327
1 1P 0.566 0.234 0.002 0.002 0.045 0.021 0.027
2 1P 5.363 0.467 0.031 0.026 )0.007 )0.004 )0.016
1 1D 4.964 1.178 0.112 0.103 0.079 0.027 )0.043
2 1D 10.901 3.950 0.167 0.157 0.029 0.029 )0.769

a The full CI results for RC�H ¼ Re taken from Ref. [228]. The full CI results for RC�H ¼ 1:5Re and RC�H ¼ 2Re taken from Ref. [75]
b From Ref. [71]
c From Ref. [41]
d The active space consisted of the 3r, 1px � 1p, 1py � 2p, and 4r orbitals
e From Ref. [73] (see, also, Ref. [72])
f From Ref. [74]. The results of the calculations with the mixed variant of the CR-EOMCCSD(T),I approach described in the text
g The equilibrium C–H bond length, Re, equals 2.13713 bohr

382



We begin our discussion of the performance of the
CR-EOMCCSD(T) method with the results for CHþ at
RC�H ¼ Re. In this case, three of the seven excited states
listed in Table 4, namely, the first-excited 1Rþ state
(2 1Rþ) and the lowest two 1D states (1 1D and 2 1D,
respectively), are dominated by double excitations, and
the second 1P state (2 1P) has a significant biexcited
component. The remaining three states (3 1Rþ, 4 1Rþ,
and 1 1P) are dominated by singles. As shown in Table
4, for transitions to the four states that have a pre-
dominantly biexcited character or significant doubly

excited components (the 2 1Rþ, 1 1D, 2 1D, and 2 1P
states), the errors in the vertical excitation energies at the
equilibrium geometry, relative to full CI, obtained with
the CR-EOMCCSD(T) approach, are only 0.01–0.10
eV. This should be compared to the much larger, 0.33–
0.92-eV, errors obtained with the EOMCCSD approach
and the 0.2–0.3-eV errors obtained [41] with the stan-
dard CC3 approach [40, 41, 42, 43], which is an iterative
perturbative triples response CC method, similar to the
EOMCCSDT-n approaches of Watts and Bartlett [37,
38]. For the three states dominated by singles, the errors

Table 5. A comparison of the CR-EOMCCSD(T), MMCC(2,3)/
CI, and MMCC(2,4)/CI vertical excitation energies of the C2

molecule, as described by the modified augmented correlation-
consistent polarized valence double zeta basis set [165, 181]
described in Ref. [43], with the exact, full CI, data and other CC
results. The full CI values, taken from Ref. [43], represent the

vertical excitation energies. All other values are the deviations from
the full CI results. The n 1X energy is the vertical excitation energy
from the ground state (1 1Rþg ) to the nth singlet state of symmetry X
calculated at the equilibrium geometry RC�C ¼ 2:348 bohr. All
energies are in electronvolts. The two lowest-energy core orbitals
were kept frozen

Table 6. A comparison of the CR-EOMCCSD(T) adiabatic excita-
tion energies of ozone with other theoretical and experimental data.
The theoretical energy values corresponding to the electronic state
n 1X represent the adiabatic excitation energies Te from the
minimum on the ground-state potentialenergy surface (PES) (1

1A1) to the minimum on the PES for the nth singlet state of
symmetry X . Numbers in parentheses represent the adiabatic
excitation energies T0, i.e., the Te values corrected for the zero-point
vibrations. All energies are in electronvolt. In all ab initio
calculations, the three lowest-energy core orbitals were kept frozen

Statea EOMCCSDb CR-EOMCCSD(T)b MRDCIc CASPT2d Expt.

2 1Aa
1 10.017e 3.648 2.50 3.45–4.02f

(9.950) (3.581) Huggins band
2 1Ab

1 9.499e 4.437 3.61
1 1B2 4.870 4.519 4.34 3.87 4.13–6.20g

(3.84) Hartley band
1 1B1 2.287 2.173 1.82 1.67 1.46–2.82g, 2.05h

(1.65) Chappuis band
1 1A2 1.667 1.616 1.44 1.20 1.46—2.82g, 1.58i

(1.597) (1.546) (1.19) Chappuis band

a The global and secondary minima on the 2 1A1 PES, discussed in Ref. [230], are designated as 2 1Aa
1 and 2 1Ab

1 , respectively
b From Refs. [74, 227]. The CR-EOMCCSD(T) calculations were performed with the mixed variant of the CR-EOMCCSD(T),I approach
described in the text and Sadlej’s basis set [229]. The geometry of the minimum on the ground-state PES (RO�O ¼ 2:4052 bohr and
ffðO�O�OÞ ¼ 116:75�) was taken from Refs. [241, 242]. The geometries of the minima on excited-state PESs were taken from Ref. [230].
The zero-point energy of the ground state, required to estimate the T0 values, was calculated using the harmonic vibrational frequencies
reported in Ref. [243]. The zero-point energies of the 2 1A1 and 1 1A2 states were calculated using the vibrational constants listed in Table III
of Ref. [231] (the 2 1A1 state) and fundamental frequencies given in Ref. [249] (the 1 1A2 state)
c The calculations performed with the MRDCI variant [233, 234] of the MRCI approach. The results were taken from Ref. [230] (for more
results and further analysis, see Ref. [232])
d The CASPT2 results taken from Ref. [246]
e The EOMCCSD method provides an incorrect ordering of excited states [74,227]. In particular, the EOMCCSD state characterized by the
adiabatic excitation energies to the global and secondary minima on the 2 1A1 PES of 10.017 and 9.499 eV, respectively, corresponds to the
third-excited 1A1 eigenvalue of �H ðCCSDÞ. After adding the CR-EOMCCSD(T) corrections due to triples, this EOMCCSD state becomes the
first-excited 1A1 state (see Refs. [74,227] for further details)
f Information about the energy range corresponding to the Huggins absorption band taken from Ref. [231]
g Information about the energy range corresponding to the Hartley and Chappuis absorption bands taken from Ref. [245]. The Hartley
band has a maximum at 4.86 eV [245]
h The experimental adiabatic excitation energy taken from Ref. [247] (also reported in Ref. [246])
i The experimental adiabatic excitation energy taken from Ref. [248] (also reported in Ref. [246])

State Full CIa EOMCCSDb CC3a EOMCCSDtc;d EOMCCSDTc MMCC(2,3)/CIb;d MMCC(2,4)/CIb;d CR-EOMCCSD(T)e

1 1Pu 1.385 0.089 )0.068 )0.047 0.034 )0.078 )0.044 )0.191
1 1Dg 2.293 2.054 0.859 0.285 0.407 0.130 0.011 0.094
1 1Rþu 5.602 0.197 )0.047 0.088 0.113 )0.032 )0.039 )0.143
1 1Pg 4.494 1.708 0.496 0.075 0.088 )0.026 0.057 )0.135

a From Ref. [43]
b From Ref. [73]
c From Ref. [12]
d The active space consisted of the 1pu, 2pu, 3rg, 3ru, 1pg, and 2pg orbitals
e From Ref. [74]. The results of the calculations with the mixed variant of the CR-EOMCCSD(T),I approach described in the text
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in the CR-EOMCCSD(T) results are on the order of
0.00–0.01 eV, which is a considerable improvement
compared with the EOMCCSD approach, which gives
errors of 0.03–0.10 eV.

This great performance of the CR-EOMCCSD(T)
approach is not limited to vertical excitation energies at
RC�H ¼ Re. As shown in Table 4, the CR-EO-
MCCSD(T) approach provides an excellent description
of excited states at stretched nuclear geometries,
including RC�H ¼ 1:5Re and RC�H ¼ 2Re, for which all
seven states listed in Table 4 and the ground state gain a
significant multi-reference character and large doubly

and, in some cases, even triply excited components [70,
72]. Typically, the huge (often greater than 1-eV) errors
in the EOMCCSD results at stretched nuclear geome-
tries of CHþ reduce in the CR-EOMCCSD(T) calcula-
tions to 0.01–0.10 eV. The only exceptions are the CR-
EOMCCSD(T) results for the high-lying 4 1Rþ and 2 1D
states at RC�H ¼ 2Re and the 2 1D state at RC�H ¼ 1:5Re,
but even in these three cases we observe a great reduc-
tion of errors in the poor EOMCCSD results (e.g., from
2.10 to 0.47 eV for the 2 1D state at RC�H ¼ 1:5Re).
Further improvements in the CR-EOMCCSD(T) results
for the 4 1Rþ and 2 1D states at RC�H ¼ 2Re and the 2 1D
state at RC�H ¼ 1:5Re can be obtained by employing the
CI-corrected MMCC(2,3) and MMCC(2,4) methods
(Table 4, Sect. 4.2). As shown in Table 4, with the very
few exceptions mentioned earlier, the excellent perfor-
mance of the noniterative CR-EOMCCSD(T) method is
comparable to that of the expensive full EOMCCSDT
approach or its active-space EOMCCSDt variant [69,
70, 71], in which the most important triple excitations of
the iterative EOMCCSDT method are selected through
active orbitals.

Great improvements in the EOMCCSD results in
calculations of excited-state PESs are also shown in Fig.
8, where we examine the ground- and excited-state po-
tential energy curves of the HF molecule. As one can see,
the CR-EOMCCSD(T) method provides spectacular
improvements in the poor description of the entire ex-
cited-state potential energy curves of HF by the EOM-
CCSD approach. The CR-EOMCCSD(T) results are so
accurate that it is hard to distinguish between the CR-
EOMCCSD(T) and exact, full CI, results shown in Fig.
8. The 0.28–0.40-eV errors in the EOMCCSD results for
the lowest 1P state (Fig. 8a) in the RH�F ¼ 2Re � 5Re

region are reduced to 0.00–0.05 eV, when the CR-
EOMCCSD(T) method is employed [74]. The 0.59–0.89-
eV errors in the EOMCCSD results for the second 1Rþ

state (Fig. 8b) in the RH�F ¼ 2Re � 5Re region are re-
duced in the CR-EOMCCSD(T) calculations to 0.01–
0.04 eV [74]. Similar or even bigger improvements are
observed for other excited states of HF [74]. As shown in
Fig. 8a, the results of the CR-EOMCCSD(T) calcula-
tions for the ground-state PES of HF are virtually
identical to the CR-CCSD(T) results discussed in Sect.
3.1. This is a consequence of the similarities between the
CR-EOMCCSD(T) energy expressions written for the
ground states and their CR-CCSD(T) analog. The CR-
EOMCCSD(T) method is capable of numerically (i.e.,
approximately) restoring the asymptotic degeneracy of
the ground electronic state and the lowest state of the 1P
symmetry [both states should dissociate into
Hð1s 2SÞ þ Fð2p5 2PÞ], broken by the EOMCCSD ap-
proach (see Fig. 8a). The ability of the MMCC methods
to restore asymptotic degeneracies of electronic states,
which are often broken by the RHF-based EOMCCSD
approach, was discussed earlier in Ref. [72] (see, also,
Ref. [12]). Other examples of this type can be found in
Ref. [74]. We can also see the numerical restoration of
the asymptotic degeneracies by the CR-EOMCCSD(T)
and CI-corrected MMCC methods (discussed in Sect.
4.2) in Table 4 for CHþ. For example, the full CI
energies of the 2 1Rþ and 2 1P states of CHþ differ by

Fig. 8. Ground- and excited-state potential energy curves of the HF
molecule, as described by the DZ basis set, obtained in the
EOMCCSD, CR-EOMCCSD(T),III, and full CI calculations: a
the ground state (1 1Rþ) and the lowest 1P (1 1P) state; b the second
1Rþ state (2 1Rþ) (see Ref. [74] for the original data)
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only 0.01 eV at RC�H ¼ 2Re, since these two states, along
with the 1 1D state, dissociate into Cð2p2 1DÞ þHþ. The
CR-EOMCCSD(T) energies of the 2 1Rþ and 2 1P states
at RC�H ¼ 2Re differ by 0.06 eV, which is a considerably
better result than the 0.18-eV difference between the
energies of these two states obtained with the EO-
MCCSD approach.

The CR-EOMCCSD(T) method is equally effective in
providing great improvements in the description of ex-
cited states for the challenging cases of the C2 and O3

molecules. Both molecules provide us with examples of
different types of excited states, including complicated
excited states dominated by doubles, in a situation where
the T3 and T4 clusters are large and the CCSD approach
provides a poor description of the ground state. Those
kinds of states are particularly difficult to describe by the
EOMCCSD and perturbative triples methods, such as
CC3 or EOMCCSDT-n and their various noniterative
analogs mentioned earlier [EOMCCSD(T) etc.]. This is
clearly shown in Table 5, where we compare the CR-
EOMCCSD(T) and other MMCC results for the vertical
excitation energies of C2 with the corresponding full CI,
EOMCCSD, CC3, EOMCCSDt, and EOMCCSDT re-
sults. For example, for the lowest 1Dg state of C2, which
is dominated by the double excitations, the EOMCCSD
and CC3 methods give errors of 2.054 and 0.859 eV,
respectively. This state is so complex that even the full
EOMCCSDT approach gives an error of 0.407 eV. With
the judicious choice of active orbitals, the active-space
analog of the full EOMCCSDT approach, termed
EOMCCSDt, gives a smaller, 0.285-eV, error, but this is
probably a coincidence due to the fortuitous cancellation
of errors in the ground- and excited-state calculations.
Remarkably enough, the CR-EOMCCSD(T) approach,
which is capable of providing an accurate and well-bal-
anced description of ground and excited states, reduces
the 2.054-, 0.859-, and 0.407-eV errors in the EO-
MCCSD, CC3, and EOMCCSDT results for the lowest
1Dg state of C2 to as little as 0.094 eV. Similar remarks
apply to the lowest 1Pg state, which is also characterized
by significant contributions from double excitations. In
this case, the 1.708- and 0.496-eV errors in the results of
the EOMCCSD and CC3 calculations reduce to 0.135
eV, when the CR-EOMCCSD(T) approach is employed.
The EOMCCSDT method provides a slightly better re-
sult, but one has to remember that the EOMCCSDT
approach is orders of magnitude more expensive than
the noniterative CR-EOMCCSD(T) approximation. For
the remaining two states of C2 listed in Table 5 (the
1 1Pu and 1 1Rþu states), which are dominated by singles,
the CR-EOMCCSD(T) method provides results of the
EOMCCSD quality, which are very good in this case.

The first-excited 1A1 state of ozone (the 2
1A1 state in

Table 6; as in Ref. [230], we limit our discussion to the
C2v symmetry), which is associated with the Huggins
band in the UV part of the absorption spectrum [231],
provides us with another example of an electronic state
dominated by doubly excited contributions. As shown,
for example, in Ref. [230] (see, also, Ref. [232]), where
the authors used the MRDCI variant [233, 234] of the
MRCI approach, this state has two minima, the global
minimum designated as 2 1Aa

1 and the secondary mini-

mum designated as 2 1Ab
1. Other interesting features of

the 2 1A1 state include the well-known conical intersec-
tion with the ground state (1 1A1) identified by Rue-
denberg et al. [235] (see, also, Refs. [236, 237, 238, 239,
240]). As shown in Table 6, the significantly doubly ex-
cited character of the 2 1A1 state of ozone, combined
with the significant role of higher–than–doubly excited
clusters in describing the ground state, lead to huge, 5–6-
eV, errors in the EOMCCSD results relative to the po-
sition of the Huggins absorption band described by
Katayama [231]. The purely electronic adiabatic excita-
tion energy, Te, obtained by calculating the difference of
the EOMCCSD energy at the geometry of the global
minimum on the 2 1A1 PES, determined in Ref. [230],
and the ground-state CCSD energy at the experimental
equilibrium geometry, taken from Refs. [241, 242], and
its T0 counterpart corrected for the zero-point vibrations
(using the vibrational constants for the 2 1A1 state re-
ported in Ref. [231] and the harmonic vibrational fre-
quencies for the ground state taken from Ref. [243]), are
approximately 6.5 eV larger than the position of the low-
energy end of the Huggins band reported in Ref. [231]. If
we used the secondary minimum on the 2 1A1 PES (the
2 1Ab

1 minimum) instead of the global minimum, we
would obtain an equally large discrepancy between the
energy range of the Huggins band and the EOMCCSD
values of Te or T0 (Table 6). These results and other
results described in our more detailed studies of the ex-
cited states of ozone [74, 227], including vertical excita-
tion energies at the equilibrium geometry (also
calculated in Ref. [244]), show that the EOMCCSD PES
of the 2 1A1 state is completely unphysical and located a
few electronvolts above the true PES. As a matter of
fact, the EOMCCSD method provides an incorrect
ordering of the 1A1 states, so we must use the third-
excited EOMCCSD state of the 1A1 symmetry (i.e., the
fourth 1A1 state, using the CCSD/EOMCCSD energy
ordering of ground and excited states) to calculate the
noniterative CR-EOMCCSD(T) triples correction that
describes the 2 1A1 state (see footnote e in Table 6 and
Refs. [74, 227] for further details). Without calculating
several states of each symmetry at the EOMCCSD level
prior to CR-EOMCCSD(T) calculations, we would risk
losing information about some low-lying doubly excited
states. Because of the limitations of the EOMCCSD
approximation, some doubly excited states resulting
from the EOMCCSD calculations are shifted to high
energies, mixing with the singly excited states that are
accurately described by the EOMCCSD method. After
correcting the EOMCCSD energies for the effects of
triples, these doubly excited states may become low-lying
states. This is what we observe in the case of the 2 1A1

state, which shows up as the higher-energy 4 1A1 state in
the CCSD/EOMCCSD calculations and the 2 1A1 state
in the CR-EOMCCSD(T) calculations.

As shown in Table 6, the CR-EOMCCSD(T) ap-
proach is capable of providing spectacular improve-
ments in the poor results for the 2 1A1 state obtained
with the EOMCCSD approach. The adiabatic excitation
energy Te, obtained by calculating the difference of the
CR-EOMCCSD(T) energies at the global minima on the
2 1A1 and 1 1A1 PESs, is in very good agreement with
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the position of the low-energy end of the Huggins band.
After correcting the CR-EOMCCSD(T) value of Te by
the zero-point energies, we obtain the adiabatic excita-
tion energy T0, which agrees with the position of the low-
energy end of the Huggins band to within 0.13 eV. The
truly multireference MRDCI approach gives the adia-
batic excitation energy, corresponding to the 2 1Aa

1
minimum, which is smaller than the position of the low-
energy end of the Huggins band by almost 1 eV. This
result seems to be worse than our adiabatic excitation
energy obtained with the much simpler single-reference
and noniterative CR-EOMCCSD(T) approximation.
Considerable improvements in the EOMCCSD results
are also observed when the CR-EOMCCSD(T) ap-
proach is applied to the remaining three excited states of
ozone listed in Table 6 (the 1 1B2, 1 1B1, and 1 1A2

states). These three states, which are associated with the
Hartley and Chappuis bands [245], are dominated by
single excitations, so the EOMCCSD method describes
them reasonably well, but it is good to see that even in
this case the CR-EOMCCSD(T) method offers non-
trivial improvements in the calculated adiabatic excita-
tion energies, which lead to very good agreements
between the CR-EOMCCSD(T) and MRDCI values of
Te and the location of the Hartley and Chappuis bands.
The CR-EOMCCSD(T) adiabatic excitation energies for
the 1 1B2, 1

1B1, and 1 1A2 states seem to be better than
the Te or T0 values obtained with the multireference
CASPT2 approach [246], which provides energies that
are somewhat too low. Remarkably enough, our CR-
EOMCCSD(T) values of Te or T0 differ by as little as
0.04–0.12 eV from the experimentally derived values of
the adiabatic excitation energies for the 1 1B1 [247] and
1 1A2 [248] states. In calculating the EOMCCSD and
CR-EOMCCSD(T) values of T0 for the 1 1A1 ! 1 1A2

transition, we used the harmonic vibrational frequencies
of the ground-state ozone molecule reported in Ref.
[243] and the fundamental frequencies characterizing the
1 1A2 state of ozone given in Ref. [249].

The previous examples clearly indicate that the
MMCC-based CR-EOMCCSD(T) approaches represent
powerful new techniques that can offer a remarkably
accurate description of excited-state PESs with the ease
of use of the ground-state CCSD(T) approach. How-
ever, there may always be some cases where the black-
box CR-EOMCCSD(T) methods are too simple to
provide highly accurate results. Alternative MMCC
approaches for excited states that may help in those
situations are described in the next section.

4.2 The CI-corrected MMCC(2,3) and MMCC(2,4)
methods

The CR-EOMCCSD(T) approaches discussed in the
previous section are, in our view, the preferred methods
for routine applications, because of the excellent com-
promise between the ease of use and high accuracy that
these methods offer, but there may be situations where
the CR-EOMCCSD(T) methods do not provide the
desired improvements. An example of the failure of the
CR-EOMCCSD(T) approach is provided by the second

1D state of CHþ at the stretched geometries
RC�H ¼ 1:5Re and RC�H ¼ 2Re (see Table 4). In this
case, the errors in the CR-EOMCCSD(T) results of 0.47
and 0.77 eV, respectively, although considerably smaller
than the 2.10–3.95-eV errors in the EOMCCSD results,
are too big to be considered as acceptable in many
applications. In cases like that, it is useful to switch to
the CI-corrected MMCC(2,3) and MMCC(2,4) ap-
proaches (the MMCC(2,3)/CI and MMCC(2,4)/CI
methods, respectively), which are the analogs of the
MMCC/CI ground-state methods discussed in Sect. 3.3.

In the excited-state MMCC(2,3)/CI and MMCC(2,4)/
CI approaches, introduced in Refs. [72, 73], we replace
the wave functions jWKi in Eqs. (116) and (117) by the
multi-reference-like CISDt and CISDtq wave functions
defined by the excited-state analogs of Eqs. (95) and
(96). Thus, the final formulas for the MMCC(2,3)/CI
and MMCC(2,4)/CI energies are very similar to the
formulas for the ground-state energies discussed in Sect.
3.3. For example, the MMCC(2,3)/CI energy expression,
obtained by inserting the CISDt wave function for state
jWKi, i.e.,

jWCISDt
K i ¼ ðCK;0 þ CK;1 þ CK;2 þ cK;3ÞjUi; ð132Þ

where CK;0jUi, CK;1jUi, and CK;2jUi are the reference,
singly excited, and doubly excited contributions to
jWCISDt

K i and where

cK;3jUi ¼
X

i1<i2<I3
a1>a2>A3

ci1i2I3
K;a1a2A3

Ea1a2A3

i1i2I3 ð133Þ

are the internal and semiinternal triples containing at
least one active occupied and one active unoccupied
spin-orbital indices included in jWCISDt

K i, into Eq. (116),
has the following form:

EðMMCC=CIÞ
K ð2; 3Þ ¼EðEOMCCSDÞ

K þ
X

i1<i2<I3
a1>a2>A3

ci1i2I3
K;a1a2A3

�Mi1i2I3
K;a1a2A3

ð2Þ=

hWCISDt
K jRðCCSDÞK eT1þT2 jUi; ð134Þ

where ci1i2I3
K;a1a2A3

are the CI coefficients obtained in the
CISDt calculations for the Kth electronic state,
Mi1i2I3

K;a1a2A3
ð2Þ are the subset of all triexcited moments of

the EOMCCSD equations defined by Eq. (46), T1 and T2

are the singly and doubly excited cluster components

obtained in the CCSD calculations, and RðCCSDÞK is the
EOMCCSD excitation operator for the Kth electronic
state. A very similar expression, based on inserting the
CISDtq wave function into Eq. (117), can be written for
the MMCC(2,4)/CI energy. All remaining details of the
MMCC(2,3)/CI and MMCC(2,4)/CI calculations,
including the related computer costs and selection of
active occupied and active unoccupied spin-orbitals that
define the triply and quadruply excited components of
the CISDt and CISDtq wave functions, Eqs. (99) and
(100), respectively, are exactly the same as in the ground-
state case discussed in Sect. 3.3. We choose active spin-
orbitals in a usual way by using information about the

386



dominant orbital excitations defining the excited states
of interest. Examples of the good choices of active
orbitals for the calculations of the valence excited states
of CHþ and C2 can be found in Tables 4 and 5 (see
footnotes d in Tables 4, 5). As one can see, it is often
sufficient to use a very small number of active orbitals in
the MMCC(2,3)/CI and MMCC(2,4)/CI calculations to
obtain excellent results for excited states. In analogy to
the ground-state MMCC/CI calculations discussed in
Sect. 3.3, the active orbital spaces used in the MMCC/CI
calculations for excited states reported in Tables 4 and 5
are so small that the numbers of all triples used in the
CISDt-based MMCC(2,3) calculations represent no
more than 30 % of all triples. The numbers of
quadruples used in the CISDtq-based MMCC(2,4)
calculations reported in Tables 4 and 5 represent less
than 6 % of all quadruples (see Refs. [72, 73] for further
details).

As shown in Tables 4 and 5, the CI-corrected
MMCC(2,3) and MMCC(2,4) approaches provide an
excellent description of the electronic excitations in CHþ

and C2. The MMCC(2,3)/CI results for CHþ at
RC�H ¼ Re are as good as the highly accurate CR-EO-
MCCSD(T) results discussed in Sect. 4.1 and compara-
ble to the results of the expensive full EOMCCSDT
calculations. The MMCC(2,4)/CI method offers addi-
tional improvements. For example, the 0.023- and 0.037-
eV errors in the MMCC(2,4)/CI results for the 2 1Rþ

and 2 1P states, respectively, are 2–3 times smaller than
the errors obtained with the MMCC(2,3)/CI and full
EOMCCSDT approximations. The MMCC(2,3)/CI re-
sults for CHþ at RC�H ¼ 1:5Re and 2Re, where all elec-
tronic states listed in Table 4 gain multireference
character, causing significant troubles for the EO-
MCCSD method, are excellent too. The mean errors in
the excitation energies corresponding to all seven states
included in Table 4, obtained in the MMCC(2,3)/CI and
MMCC(2,4)/CI calculations, are 0.048 and 0.022 eV,
respectively, at RC�H ¼ 1:5Re and 0.047 and 0.016 eV,
respectively, at RC�H ¼ 2Re. This should be compared
with the very large 1.114- and 2.095-eV errors in the
EOMCCSD results for the lowest two 1D states at
RC�H ¼ 1:5Re and to the 1.178- and 3.950-eV errors in
the EOMCCSD results for the same two states at
RC�H ¼ 2Re. In particular, the MMCC(2,3)/CI approach
improves the relatively poor CR-EOMCCSD(T) results
for the second 1D state at RC�H ¼ 1:5Re and 2Re,
reducing the unsigned errors of 0.473 and 0.769 eV to
0.086 and 0.029 eV, respectively. As in the case of the
equilibrium geometry, the MMCC(2,4)/CI method re-
duces the small errors in the MMCC(2,3)/CI results at
RC�H ¼ 1:5Re and 2Re even further, providing us with
the final reduction of mean absolute errors in the EO-
MCCSD results at these two nuclear geometries by
impressive factors of 32 and 66, respectively.

The MMCC(2,3)/CI and MMCC(2,4)/CI results for
the excited states of C2 shown in Table 5 are equally
remarkable. In particular, the MMCC(2,3)/CI method
reduces the 2.054- and 1.708-eV errors in the EO-
MCCSD results for the lowest 1Dg and 1Pg states of C2

that are dominated by doubles to 0.130 and 0.026 eV,
respectively, which is a level of improvement comparable

to that offered by the CR-EOMCCSD(T) approach. The
MMCC(2,4)/CI method reduces the small, 0.130-eV,
error in the MMCC(2,3)/CI results for the complicated
1 1Dg state of C2 even further (to 0.011 eV). The overall
performance of the MMCC(2,3)/CI and MMCC(2,4)/CI
methods in describing the valence excited states of C2 is
better than that of the EOMCCSDT approach or its
active-space EOMCCSDt variant and much better than
the performance of the perturbative triples CC3 method.
The MMCC(2,4)/CI approach, which provides a mean
absolute error in describing excited states of C2 of 0.038
eV, is also more accurate than the CR-EOMCCSD(T)
method discussed in Sect. 4.1 [the mean absolute error in
describing excited states of C2 characterizing the CR-
EOMCCSD(T) approach is 0.141 eV; the MMCC(2,3)/
CI method gives an average error of 0.067 eV]. We must
remember, however, that the CR-EOMCCSD(T) ap-
proach is less expensive and easier to use than the
MMCC(2,4)/CI method, while providing reasonable
results for C2.

The analysis of the MMCC/CI results for CHþ and
C2 indicates that the MMCC theory for excited states is
as robust as the ground-state MMCC formalism. Since
we can always increase the active orbital space in the
MMCC/CI calculations or switch to higher-level
MMCC(2,5) or MMCC(2,6) approximations or, if none
of this works, change the form of the wave functions
jWKi used in the excited-state MMCC calculations, we
can conclude that one can always improve the CR-EO-
MCCSD(T) and CI-corrected MMCC results based on
the general MMCC formulas for the excited-state ener-
gies discussed in Sect. 2.2 by working on the relevant
elements of the MMCC calculations. The MMCC the-
ory seems to be flexible enough to enable such
improvements.

5 Summary and concluding remarks

In this article, we have described the MMCC formalism,
which provides a systematic way of improving the results
of the standard CC and EOMCC calculations for the
ground- and excited-state energies of atomic and molec-
ular systems. The MMCC theory is based on a few
rigorous relationships that define the many-body struc-
ture of the differences between the full CI and CC or
EOMCC energies in a given basis set. These relation-
ships, which employ the concept of the generalized
moments of the CC/EOMCC equations, provide us with
precise information about how to estimate the remanent
errors that occur in the standard CC or EOMCC
calculations and how to design suitable noniterative
corrections to the CC/EOMCC energies that are close to
the exact, full CI, energies. The MMCC theory is
particularly valuable in designing the noniterative CC/
EOMCC approximations for PESs involving bond
breaking, quasidegenerate electronic states characterized
by a large degree of nondynamic correlation, and PESs
of excited states, including excited states dominated by
two-electron and other many-electron transitions. In all
those situations, the standard CC/EOMCC methods,
such as CCSD or EOMCCSD, and their various
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noniterative extensions, such as CCSD(T) or EO-
MCCSD(T), fail because of inadequate information
about higher–than–doubly excited clusters and divergent
behavior of the MBPT expansions on which the
standard noniterative methods of the CCSD(T) type
are based.

We have discussed several approximate variants of
the MMCC theory, including the renormalized and
completely renormalized CC/EOMCC methods, the
QMMCC approaches, the CI-corrected MMCC meth-
ods, and the GMMCC approaches. We have focused on
approaches that use the spin- and symmetry-adapted
references of the RHF or ROHF type and approaches
that employ only one- and two-body cluster components
resulting from CCSD/EOMCCSD or other CCSD-like
calculations in designing the noniterative MMCC energy
corrections. The MMCC theory can be used to correct
the results of the higher-level CC/EOMCC calculations,
such as CCSDT, CCSDTQ, or EOMCCSDT, but we
have not discussed the MMCC approaches of this type in
this article, since our focus has been on relatively inex-
pensive and yet accurate methods that are based on one-
and two-body clusters. Along with previously published
results, we have reviewed several of the most recent
developments, including the open-shell extensions of the
CR-CC methods, the MMCC approaches employing
the ECCSD theory, and the CR-EOMCC methods for
excited states (for a complete list of acronyms repre-
senting quantum-chemical approaches discussed or
referred to in this article, see Table 7 in appendix).

The renormalized and completely renormalized CC
methods, including the CR-CCSD(T) and CR-
CCSD(TQ) approaches, in which simple and relatively
inexpensive noniterative corrections of the CCSD(T)
type are added to the CCSD energies, are useful in
improving the results of the standard CCSD(T) and
CCSDðTQfÞ calculations for the ground-state PESs
involving single and double bond stretching or breaking.
The CR-CCSD(T) and CR-CCSD(TQ) methods can be
regarded as computational black boxes, which are as
easy to use as the popular CCSD(T) approach or its
CCSDðTQfÞ extension. The CR-EOMCCSD(T) ap-
proach, which is an analog of the ground-state CR-
CCSD(T) approximation, enables us to obtain a highly
accurate description of excited states dominated by
doubles and large fragments of excited-state PESs with
the ease of the ground-state CCSD(T) calculation. The
QMMCC approaches allow us to improve the CR-CC
results for multiple bond breaking by considering the
carefully selected higher-order terms in the expressions
defining the MMCC corrections to the CCSD energies.
The CI-corrected MMCC methods, in which the
approximate information about the ground- and ex-
cited-state wave functions jW0i and jWKi that enter the
MMCC energy expressions is obtained with the multi-
reference-like CI approaches, provide us with alternative
ways of improving the results of CC/EOMCC calcula-
tions for single and multiple bond breaking and excited-
state PESs, even when the CR-CC and CR-EOMCC
methods do not work well. Finally, the GMMCC theory
enables us to use the cluster amplitudes obtained in non-
CC calculations. This option is very useful for obtaining

considerable improvements in the description of multiple
bond breaking. As it turns out, much better MMCC
results are obtained if the singly and doubly excited
clusters, T1 and T2, respectively, obtained in the standard
CCSD calculations, are replaced by the T1 and T2 clus-
ters resulting from the ECCSD calculations. Our results
in the area of combining the MMCC and ECC formal-
isms are still preliminary in nature, but they are very
promising too, so we plan to pursue this new method of
improving the results for multiple bond breaking and
other cases involving large nondynamic correlation ef-
fects in the future.

We have demonstrated that the MMCC and
GMMCC formalisms offer many advantages, which can
help to design new classes of noniterative CC/EOMCC
approximations. Interestingly enough, the MMCC and
GMMCC theories are so robust that we can obtain an
accurate description of bond breaking and excited-state
PESs with the ease of single-reference calculations. They
allow us to use the CC and non-CC cluster amplitudes
and work equally well for ground and excited states. One
of the unexplored ideas is the applicability of the
MMCC theory in MRCC calculations. The general
theory of improving the results of MRCC calculations
using the noniterative MMCC corrections to eigenvalues
of the effective Hamiltonians used in MRCC theories
has been described in Ref. [133] (see, also, Ref. [76]). It
may be worth testing this genuine multireference exten-
sion of the MMCC formalism. This and other ideas of
improving the results of standard CC/EOMCC and
MRCC calculations via the MMCC formalism will be
explored in the future.
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Table 7. Acronyms representing quantum-chemical approaches discussed or referred to in this article

Acronym Meaning

Coupled-cluster (CC) methods
CCSD Coupled-cluster method with singly and doubly excited clusters
CCSDT Coupled-cluster method with singly, doubly, and triply excited clusters
CCSDTQ Coupled-cluster method with singly, doubly, triply, and quadruply excited clusters
CCSDTQP Coupled-cluster method with singly, doubly, triply, quadruply, and pentuply excited clusters
CCSD[T], CCSD(T) Two standard coupled-cluster methods with singles, doubles, and noniterative corrections due to triples
CCSDðTQfÞ Coupled-cluster method with singles, doubles, and noniterative corrections due to triples and quadruples
CCSDTðQfÞ Coupled-cluster method with singles, doubles, triples, and noniterative corrections due to quadruples
MRCC Multireference coupled-cluster theories
Equation-of-motion coupled-cluster (EOMCC) and related methods for excited states
EOMCCSD Equation-of-motion coupled-cluster method with singles and doubles
EOMCCSDT Equation-of-motion coupled-cluster method with singles, doubles, and triples
EOMCCSDt Equation-of-motion coupled-cluster method with all singles and doubles, and triples selected via active orbitals
EOMCCSD(T) Equation-of-motion coupled-cluster method with singles, doubles, and noniterative corrections due to triples
EOMCCSD(~T) One of the modifications of the EOMCCSD(T) approach
EOMCCSD(T0) One of the modifications of the EOMCCSD(T) approach
EOMCCSDT-n Equation-of-motion coupled-cluster methods with singles, doubles, and iterative perturbative triples
CC3 Response coupled-cluster method with singles, doubles, and iterative perturbative triples
CCSDR(3) Response coupled-cluster method with singles, doubles, and noniterative corrections due to triples
Extended coupled-cluster (ECC) methods
ECCD, QCCD Extended coupled-cluster method with doubles, quadratic approximation to ECCD
ECCSD Extended coupled-cluster method with singles and doubles
BECCSD, QECCSD Bilinear and quadratic approximations to ECCSD
Many-body perturbation theory (MBPT) methods
MBPT(2) Second-order many-body perturbation theory
MRMBPT Multireference many-body perturbation theories
CASPT2 Second-order multireference many-body perturbation theory using CASSCF reference
Configuration interaction (CI) methods
CISD Single-reference configuration interaction approach with singles and doubles
CISDT Single-reference configuration interaction approach with singles, doubles, and triples
CISDt Configuration interaction approach with all singles and doubles, and triples selected using active orbitals
CISDtq An extension of the CISDt approach, where triples and quadruples are selected using active orbitals
CISDtqp An extension of the CISDt approach, where triples to pentuples are selected using active orbitals
CISDtqph An extension of the CISDt approach, where triples to hextuples are selected using active orbitals
MRCI Multireference configuration interaction methods
MRCI(Q) Internally contracted interaction approach with the Davidson correction
Method of moments of coupled-cluster equations (MMCC) (jWK > and |W0 > are the wave functions entering the MMCC formulas)
MMCC(2,3) MMCC correction to the CCSD/EOMCCSD energy in which jWKi is truncated at triples
MMCC(2,4) MMCC correction to the CCSD/EOMCCSD energy in which jWKi is truncated at quadruples
MMCC(2,5) MMCC correction to the CCSD/EOMCCSD energy in which jWKi is truncated at pentuples
MMCC(2,6) MMCC correction to the CCSD/EOMCCSD energy in which jWKi is truncated at hextuples
CR-CC, R-CC Completely renormalized and renormalized coupled-cluster approaches (jWKi from the MBPT analysis)
CR-CCSD[T] Completely renormalized CCSD[T] approach [based on the MMCC(2,3) approximation]
CR-CCSD(T) Completely renormalized CCSD(T) approach [based on the MMCC(2,3) approximation]
CR-CCSD(TQ) Completely renormalized CCSD(TQ) approach [based on the MMCC(2,4) approximation]
CR-EOMCCSD(T) Completely renormalized EOMCCSD(T) approach for excited states [based on the MMCC(2,3) approximation]
R-CCSD[T] Renormalized CCSD[T] approach [based on the MMCC(2,3) method; approximation to CR-CCSD[T]]
R-CCSD(T) Renormalized CCSD(T) approach [based on the MMCC(2,3) method; approximation to CR-CCSD(T)]
R-CCSD(TQ) Renormalized CCSD(TQ) approach [based on the MMCC(2,4) method; approximation to CR-CCSD(TQ)]
QMMCC Quadratic MMCC approaches (the exponential wave function jW0i truncated at quadratic terms)
QMMCC(2,3) Quadratic MMCC method based on the MMCC(2,3) approximation
QMMCC(2,4) Quadratic MMCC method based on the MMCC(2,4) approximation
QMMCC(2,5) Quadratic MMCC method based on the MMCC(2,5) approximation
QMMCC(2,6) Quadratic MMCC method based on the MMCC(2,6) approximation
MMCC/CI CI-corrected MMCC approaches (jWKi obtained in limited single-reference or multireference CI calculations)
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